SV-10
SV-100
Vibro Viscometer

INSTRUCTION MANUAL

A&D Company, Limited

1WMPD4000646E
1. INTRODUCTION

This manual describes how the SV series viscometer works and how to get the most out of it in terms of performance.

Read this manual thoroughly before using the viscometer and keep it at hand for future reference.

1-1 Compliance

Compliance with FCC Rules

Please note that this device generates, uses and can radiate radio frequency energy. This device has been tested and has been found to comply with the limits of a Class A computing device pursuant to Subpart J of Part 15 of FCC rules. These rules are designed to provide reasonable protection against interference when this device is operated in a commercial environment. If this unit is operated in a residential area, it may cause some interference and under these circumstances the user would be required to take, at his own expense, whatever measures are necessary to eliminate the interference.

(FCC = Federal Communications Commission in the U.S.A.)

Compliance with Council Directives

This device features radio interference suppression and safety regulation in compliance with the following Council Directives

- Council directive 89/336/EEC EN61326 EMC directive
- Council directive 73/23/EEC EN60950 Safety of Information Technology Equipment

EN61326 Emission and Immunity.

Note

The CE mark is an official mandatory European marking.

Please note that any electronic product must comply with local laws and regulations when sold or used anywhere outside Europe.
A & D Instruments Ltd. hereby declare that the following weighing product conforms to the requirements of the council directives on ...

Electromagnetic Compatibility (EMC) 89/336/EEC
Low voltage equipment (LVD) 73/23/EEC amended by 93/68/EEC

provided that they bear the CE mark of conformity as shown above.

SV Series Viscometer

Standards applicable:
BS EN 61326 Electrical equipment for measurement, control and laboratory use - EMC requirements
BS EN 60950 Safety of Information Technology Equipment.
CE Mark First Applied June 2003

Signed for A&D Instruments in Oxford England April 2005

Takeo Goto
Managing Director
1-2 Features

- **High accuracy**
 The Sine-wave Vibro Viscometer achieves a high measurement accuracy of 1%*1 (repeatability) over the full range.

 *1 Refer to "14. SPECIFICATIONS" on page 58.

- **Wide range continuous measurement**
 Continuous measurement over the whole measuring range is possible, without replacing the viscosity detection sensor plates.

- **Standard temperature sensor**
 The temperature sensor to measure the sample temperature is installed as standard. The temperature sensor is located between the two sensor plates. So, the accurate detection of the relation between temperature and viscosity is possible.

- **Accurate measurement**
 Due to the low heat capacity of the viscosity detection unit (sensor plates and temperature sensor), the time required for temperature equilibrium is short. Thus, the sample viscosity can be measured accurately in a short time.

- **Long continuous measurement time**
 The sensor plates, with a low frequency of 30 Hz and an amplitude of less than 1 mm, apply very little load to the sample. So, the viscometer can continuously obtain stable viscosity values without causing a temperature rise or damaging the sample.

- **Measurement of a non-Newtonian fluid/foaming sample**
 The thin sensor plates allow little deformation of the sample texture. Thus, non-Newtonian fluid can be measured in a stable way. And, foaming samples can be measured without breaking minute foam particles and with less influence scattering large foam particles.

 When measuring tap water, bubbles may accumulate on the sensor plates, increasing the viscosity.

- **Measurement of a flowing sample**
 The two sensor plates oscillate in the opposite direction. So, even when a sample is in motion, errors are eliminated. This allows measurement of a sample while being stirred. The viscometer can be used for a flowing product line, which enables field management with identical data used at the laboratories.

- **Calibration**
 The viscometer can be calibrated using a standard viscosity fluid or a sample of a known viscosity. Calibration allows the viscometer to maintain the accuracy constantly.

 By calibrating an actual sample, using the viscosity value obtained by another type of viscometer as a correction value, the measurement data obtained by the SV series viscometer can be combined into those obtained by the other type of viscometer.

- **Simplified calibration when measuring the viscosity near 1 mPa·s, (SV-10 only)**
 Simplified calibration using purified water is a one-key operation. The SV-10 has a built-in function to measure the temperature of the purified water using the temperature sensor and calculates the viscosity value of the purified water at that temperature.

 At this time, be careful not to influence the viscosity value by generating bubbles.

- **Standard windows communication tools WinCT-Viscosity**
 Windows communication tools WinCT-Viscosity (CD-ROM) is provided as standard. The CD-ROM contains the graphing program RsVisco, which imports the data to a personal computer and displays the results as a graph in real time. With RsVisco, changes in viscosity over time and temperature dependency of viscosity can be observed easily and the obtained data can be saved in files.
2. UNPACKING THE VISCOMETER

2-1 Unpacking

- The viscometer is a precision instrument. Unpack the viscometer carefully. Keep the packing material to be used for transporting the viscometer in the future.

Note
Please confirm that the AC adapter type is correct for your local voltage and receptacle type.
2-2 Installing the Viscometer

Install the viscometer as follows:

1. Connect the display unit to the main unit using the connection cable.

 ![Connection cable from the display unit (Connect as shown)]

 ![Serial number]

 ![Main unit]

2. Insert the AC adapter plug into the AC adapter jack located on the rear side of the display unit. Insert the other end of the AC adapter plug into an electrical outlet.

 ![Serial number]

 ![Connection cable from the main unit (Connect as shown)]

 ![Display unit rear side]

 ![AC adapter cable]

Note:

- Confirm that the adapter type is correct for the local voltage and power receptacle type.

- The main unit and the display unit have been adjusted in pairs. For accurate viscosity measurement, before use, confirm that the main unit and the display unit have the same serial number.
3. DISPLAY AND KEYS

3-1 Display

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity display</td>
<td>Standby mode Displays [- - - - -].</td>
</tr>
<tr>
<td></td>
<td>Measurement mode Displays the viscosity value in real time.</td>
</tr>
<tr>
<td></td>
<td>Data hold mode Freezes the display of the viscosity value.</td>
</tr>
<tr>
<td>Viscosity units</td>
<td>Displays the unit of viscosity.</td>
</tr>
<tr>
<td>Temperature display</td>
<td>Standby mode Displays the temperature value in real time.</td>
</tr>
<tr>
<td></td>
<td>Measurement mode Displays the temperature value in real time.</td>
</tr>
<tr>
<td></td>
<td>Data hold mode Freezes the display of the temperature value.</td>
</tr>
<tr>
<td>Temperature units</td>
<td>Displays the unit of temperature.</td>
</tr>
<tr>
<td>Processing indicator</td>
<td>Blinks while the measurement is being performed. (While the sensor plates are in vibrating motion)</td>
</tr>
<tr>
<td>Hold indicator</td>
<td>Illuminates while the viscometer is in the data hold mode.</td>
</tr>
<tr>
<td>RsVisco link indicator</td>
<td>Illuminates while measurement is performed using RsVisco, the graphing program contained in the WinCT-Viscosity (CD-ROM).</td>
</tr>
<tr>
<td>Calibration indicator</td>
<td>Displays " [" in the calibration mode.</td>
</tr>
<tr>
<td>Calibration mode ID indicator</td>
<td>At one-point calibration Blank display []</td>
</tr>
<tr>
<td></td>
<td>At two-point calibration Inputting first point Displays [- -]</td>
</tr>
<tr>
<td></td>
<td>Inputting second point Displays [- -]</td>
</tr>
</tbody>
</table>
3-2 Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON:OFF key</td>
<td>Turns the power on and off. When the power is turned on, the viscometer enters the standby mode ([- - - - -] is displayed.)</td>
</tr>
<tr>
<td>START key</td>
<td>Start a measurement. (The processing indicator blinks.) Displays the viscosity and temperature values in real time during measurement.</td>
</tr>
<tr>
<td>STOP key</td>
<td>Stops the measurement (The processing indicator is off) and freezes the display of the viscosity and temperature values at the time the STOP key is pressed during measurement. When the STOP key is pressed again, the viscometer enters the standby mode.</td>
</tr>
<tr>
<td>HOLD key</td>
<td>Freezes temporarily the display of the measurement data (viscosity and temperature) at the time the HOLD key is pressed during measurement. (The hold indicator is on.) In the above condition, the measurement is continued. (The processing indicator blinks.) Pressing the HOLD key again releases the data hold mode. *1</td>
</tr>
<tr>
<td>MODE key</td>
<td>Changes viscosity units. *1 (By the function setting "Fnc l", the measurement elapsed time can be displayed.)</td>
</tr>
<tr>
<td>PRINT key</td>
<td>Outputs the measurement data.</td>
</tr>
</tbody>
</table>

*1 While the measurement is being performed using the graphing program RsVisco, the data hold mode using the **HOLD** key and unit changes using the **MODE** key are not available. RsVisco is contained in the accessory Windows communication tools, WinCT-Viscosity.

While data are being output continuously (function setting "Pr t " or SIR command), the data hold mode using the **HOLD** key is not available.
3-3 Displaying the Viscosity Values

The viscosity values are displayed as below, depending on the unit selected and the viscosity range.

The correlation of the units are as follows: 1 mPa s = 0.001 Pa s = 1 cP = 0.01 P

3-3-1 SV-10

Use the MODE key to switch between mPa s (Millipascal second) and Pa s (Pascal second), or between cP (Centipoise) and P (Poise).

The unit selected at the factory before shipment is mPa s.

When the viscosity unit is mPa s or Pa s:

<table>
<thead>
<tr>
<th>Viscosity measured</th>
<th>Unit selected</th>
<th>mPa s</th>
<th>Display</th>
<th>Minimum display</th>
<th>Unit</th>
<th>Remarks</th>
<th>Pas</th>
<th>Display</th>
<th>Minimum display</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.30</td>
<td>1.00</td>
<td>9.99</td>
<td>0.01</td>
<td>mPa s</td>
<td></td>
<td>0.0003</td>
<td>0.0010</td>
<td>0.0099</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0</td>
<td>99.9</td>
<td>100</td>
<td>0.1</td>
<td>pa s</td>
<td></td>
<td>0.100</td>
<td>0.0999</td>
<td>0.999</td>
<td>0.001</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>1.00</td>
<td>999</td>
<td>999</td>
<td>1</td>
<td>pa s</td>
<td>Sw</td>
<td>1.00</td>
<td>10.00</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>10.00</td>
<td>10000</td>
<td>10000</td>
<td>0.01</td>
<td>pas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When the viscosity unit is cP or P:

<table>
<thead>
<tr>
<th>Viscosity measured</th>
<th>Unit selected</th>
<th>mPa s</th>
<th>Display</th>
<th>Minimum display</th>
<th>Unit</th>
<th>Remarks</th>
<th>P</th>
<th>Display</th>
<th>Minimum display</th>
<th>Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.30</td>
<td>1.00</td>
<td>9.99</td>
<td>0.01</td>
<td>cP</td>
<td></td>
<td>0.0030</td>
<td>0.0100</td>
<td>0.0099</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0</td>
<td>99.9</td>
<td>100</td>
<td>0.1</td>
<td>cP</td>
<td></td>
<td>0.100</td>
<td>0.999</td>
<td>0.999</td>
<td>0.001</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>1.00</td>
<td>999</td>
<td>999</td>
<td>1</td>
<td>cP</td>
<td></td>
<td>1.00</td>
<td>9.99</td>
<td>9.99</td>
<td>0.01</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>10.00</td>
<td>10000</td>
<td>10000</td>
<td>0.1</td>
<td>cP</td>
<td>Sw</td>
<td>10.0</td>
<td>100.0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td></td>
<td>100.0</td>
<td>10000</td>
<td>10000</td>
<td>0.1</td>
<td>cP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3-3-2 SV-100

Use the **MODE** key to switch between Pa\(s\) (Pascal second) and P (Poise).

The unit selected at the factory before shipment is Pa\(s\).

<table>
<thead>
<tr>
<th>Viscosity measured</th>
<th>Unit selected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pas</td>
</tr>
<tr>
<td></td>
<td>Display</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>9.99</td>
</tr>
<tr>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>
4. PRECAUTIONS

To get the optimum performance from the viscometer and acquire accurate measurement data, note the following:

4-1 General Precautions

- Install the viscometer in an environment where the temperature and humidity are not excessive. The best operating temperature is 25°C±2°C at 45-60% relative humidity.
- For precise measurement, install the viscometer where there are no great changes in temperature and humidity.
- Install the viscometer where it is not exposed to direct sunlight and it is not affected by heaters or air conditioners.
- Install the viscometer where it is free of dust.
- Install the viscometer away from equipment which produces magnetic fields.
- The viscometer uses the Tuning-fork Vibration Method. So, use much care to avoid external vibration, especially when measuring low viscosity. Places where the viscometer is prone to vibration are: Second or higher floor, soft ground, near busy highways or rail lines. Avoid these places as a measuring site. If measurement is to be performed in such a place, use an anti-vibration table that is available as an option (AD-1685).
- Protect the internal parts from liquid spills and excessive dust.
- Do not disassemble the viscometer.
- When precise measurement is required, acclimatize the viscometer to the measuring environment. After installation, plug in the AC adapter and warm up the viscometer for one hour or more.
4-2 During Use

- To level the surface of the sample; adjust the leveling feet so that the center of the narrow part of the right and left sensor plates is on the liquid surface.

- The viscosity of a liquid is temperature dependent and changes by negative 2 to negative 10 percent, per degree Celsius. Take changes in the liquid temperature into consideration for an accurate measurement.

- Be sure to calibrate using the standard viscosity fluid or purified water before measurement. In a measurement that takes a long time, perform calibration periodically, as necessary.

- Placing the sensor plates and the temperature sensor in the sample may change the sample temperature. For precise measurement, leave the sample as is for a while, after placing the sensor plates and the temperature sensor, to ensure no changes to the sample temperature. And then, start a measurement.

- Ensure a stable power source when using the AC adapter.

- Use only your finger to press the keys. Using a sharp instrument such as a pen may damage keys.

- The sample cup is made of polycarbonate (PC) and is not appropriate for organic solvents. When organic solvents are used as a sample fluid, do not use the accessory sample cup. Use the glass sample cup (AX-SV-35) that is sold separately or a commercially-available glass beaker.

- The protector can be raised or removed. So, even when a beaker is used, the viscosity can be measured with a small amount of sample.

How to remove the protector:

Press the left and right side frames lightly in the direction indicated as 1 to remove the rotational axis. Pull the protector in the direction indicated as 2 to remove.
4-3 After Use

- Remove any residual sample material from the sensor plates, temperature sensor and protector using alcohol. Using the sensor plates, temperature sensor and protector with residue of an old sample left on will cause a measurement error.

 Clean the sensor plates carefully to avoid bending them.

 The sensor plates and the temperature sensor are made of stainless steel (SUS304). The surface is plated with 24K gold.

 Note

 Liquids with strong acidity may remove the gold plating and corrode the sensor plates and the temperature sensor.

How to clean the sensor plates and temperature sensor

 Hold the sensor plate or temperature sensor with tissue paper. Move the tissue paper downward to remove the sample.

 Then, use tissue paper moistened with alcohol, to remove any residual sample material.

- Clean the sample cup as necessary.

- Unlock the cable connector before disconnecting the connection cable.

How to unlock the cable connector
4-4 Measuring the Absolute Value of Viscosity

The SV Series Sine-wave Vibro Viscometer, as a measuring principle, detects the product of viscosity and density.

\[
\text{Displayed viscosity value} = \text{Viscosity} \times \text{Density} \quad [1]
\]

While the displayed value has a unit of mPa s, it indicates the product of viscosity and density.

Example

(1) When a sample has an absolute value of viscosity of 2.00 mPa s and density of 1.000:

\[
\text{Displayed value} = 2.00 \,[\text{mPa}\cdot\text{s}] \times 1.000 \\
= 2.00 \,[\text{mPa}\cdot\text{s}]
\]

(2) When a sample has an absolute value of viscosity of 2.00 mPa s and density of 0.800:

\[
\text{Displayed value} = 2.00 \,[\text{mPa}\cdot\text{s}] \times 0.800 \\
= 1.60 \,[\text{mPa}\cdot\text{s}]
\]

Note

The density can be measured, using the density determination kit, AD-1653 in combination with a balance.

To obtain the absolute viscosity value precisely, do as follows:

4-4-1 At Measurement

Divide the displayed viscosity value by the sample density to obtain the absolute value of viscosity.

Example

(1) Measure the sample and confirm the displayed viscosity value.

Here, 736 mPa s as an example.

(2) Check the sample density at the temperature when the sample is measured.

Here, 0.856 as an example.

(3) Divide the displayed viscosity value by the sample density to obtain the absolute value of viscosity.

Here, 860 mPa s is obtained as the absolute viscosity value.

\[
\text{Absolute value of viscosity} = \frac{\text{Displayed viscosity value}}{\text{Sample density}} \\
= \frac{736}{0.856} \approx 860 \, \text{mPa s}
\]
4-4-2 At Calibration

When calibrating, enter the product of the absolute viscosity value and the density of the standard viscosity fluid used for calibration, as a correction value.

The standard viscosity fluid has the calculation sheet of kinetic viscosity and viscosity at various temperatures attached. To obtain the correction value using this sheet, do as follows:

\[
\text{Kinetic viscosity} = \frac{\text{Viscosity}}{\text{Density}} \quad \text{From this, Density} = \frac{\text{Viscosity}}{\text{Kinetic viscosity}} \quad \ldots \quad \text{[2]}
\]

Correction value = Viscosity × Density \ldots \quad \text{[3]}

When substituting [2] for the density in [3], the following equation is obtained.

\[
\text{Correction value} = \frac{\text{Viscosity}^2}{\text{Kinetic viscosity}} \quad \ldots \quad \text{[4]}
\]

Example 1: To calibrate the viscometer using a standard viscosity fluid:

Using the calculation sheet, calculate the value used for calibration.

(1) Check the kinetic viscosity and the viscosity at the temperature when the calibration is performed.

Here, 1011 mm²/s for the kinetic viscosity and 889 mPa·s for the viscosity at 20°C as an example.

(2) Substitute the values above into equation [4].

\[
\frac{889^2}{1011} \approx 781
\]

781 mPa·s is obtained as a correction value used for calibration.

(3) After calibration, measure the viscosity of the standard viscosity fluid used and confirm that the viscometer displays the similar value as the correction value, 781 mPa·s in this example. This completes the calibration procedure.

Example 2: To calibrate using a standard viscosity fluid with known values of viscosity and density.

In this example, a standard viscosity fluid with a viscosity of 889 mPa·s at 20°C is used.

(1) Check the viscosity value and the density of the standard viscosity fluid at the temperature when the calibration is performed.

Here, 889 mPa·s for the viscosity and 0.878 for the density at 20°C as an example.

(2) Substitute the values above into equation [3].

\[
889 \times 0.878 \approx 781
\]

781 mPa·s is obtained as a correction value used for calibration.

(3) After calibration, measure the viscosity of the standard viscosity fluid used and confirm that the viscometer displays the similar value as the correction value, 781 mPa·s in this example. This completes the calibration procedure.
5. MEASUREMENT

5-1 Preparing the Sample

1. Pour the sample into the cup until its surface reaches between the level gauges. The level gauges indicate 35 and 45 mL.
2. Attach the cup on the table along the guides.
3. Confirm that the protector is in the position as shown in the figure. Raise the lever to release the sensor unit.
4. Pinch the grips, support the front side of the sensor unit and gently lower the sensor plates above the sample surface.
5. Lower the lever to secure the sensor unit.
6. Turn the knob on the table so as to adjust the sample surface to the center of the narrow part of the sensor plates. At this time, use the surface locator plate as a guide. The surface locator plate has been secured in position so that the tip of the surface locator plate comes into contact with the sample surface.

Note
- Be sure to adjust the sample surface to the center of the narrow part of the sensor plates. Otherwise, a measurement error may occur.
- The surface locator plate can be attached or removed by loosening the screw.
- Before removing the sensor protective cover, remove the surface locator plate.
- When the surface locator plate was removed and attached again, it is recommended that calibration be performed using the standard viscosity fluid before measurement.
Note
Use the protector in the position as shown on the left below. If the protector is not used with the SV-10, a measurement error may occur, especially in measuring a viscosity over 5000 mPas.

![Protector Diagram]

When the position of the sensor plates in the liquid is not at the same level, level the viscometer using the leveling feet so that the liquid surface will be leveled.
5-2 Basic Measurement Procedure

1. With the power turned off, press the **ON:OFF** key.

 When the display is in the standby mode, press the **START** key. *1
 After about 15 seconds, the measurement values are displayed.

2. During measurement, press the **HOLD** key as necessary, to freeze the display temporarily.
 To release the data hold mode, press the **HOLD** key again. *2

3. Press the **STOP** key to stop the measurement. The measurement results freeze and are displayed.

4. To stop the measurement, press the **STOP** key.
 To go on to the next measurement, set the sample and press the **START** key.

When the viscosity value is below the measuring range, **L** is displayed.
When the viscosity value exceeds the measuring range, **H** is displayed.
If the sensor plates are not in vibrating motion for about 20 seconds, for example, when the sample coagulates, the measurement will stop automatically.

*1 When the graphing program RsVisco is used, press the **START** button on the RsVisco to start a measurement.

*2 While the measurement is being performed using the graphing program RsVisco or data are being output continuously (function setting "Pr 2" or SIR command), the data hold mode using the **HOLD** key is not available.
5-3 Changing Units

The units of viscosity available are: mPas (millipascal second), Pa\text{s} (Pascal second), cP (Centipoise), P (Poise).

The correlation of the units are as follows: 1 mPas = 0.001 Pa\text{s} = 1 cP = 0.01 P

The units of temperature available are: °C (Celsius) and °F (Fahrenheit).

The unit selected upon power-on depends on the function setting. The unit selected at the factory before shipment is as shown below.

<table>
<thead>
<tr>
<th>Model</th>
<th>Viscosity</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV-10</td>
<td>mPa\cdot s</td>
<td>°C</td>
</tr>
<tr>
<td>SV-100</td>
<td>Pa\cdot s</td>
<td></td>
</tr>
</tbody>
</table>

Use the MODE key to change units. Each time the MODE key is pressed, units are switched as below:

Note that the unit of temperature is fixed in the function setting.

SV-10

- In the function setting, mPa\cdot s or Pa\cdot s is selected:

 ![Conversion mPa\cdot s to Pa\cdot s]

- In the function setting, cP or P is selected:

 ![Conversion cP to P]

SV-100

 ![Conversion Pa\cdot s to P]

Note

While the measurement is being performed using the graphing program RsVisco, unit changes using the MODE key is not available.

With the function setting "fnc l", pressing the MODE key during measurement will display the measurement elapsed time.
6. VISCOSITY CALIBRATION

- Viscosity calibration is to correct the viscosity value.
- Two calibration methods are available: one-point calibration and two-point calibration, using standard viscosity fluids. With the SV-10, simplified calibration using purified water is available.
- It is recommended that calibration be performed using a fluid with a known viscosity value which is close to the sample viscosity. When the measuring range is great, perform two-point calibration. Two-point calibration requires two standard viscosity fluids (high viscosity and low viscosity) that are appropriate for the measuring range.
- With the SV-10, when measuring the viscosity near 1 mPa\cdot s, simplified calibration using purified water, which is a one-key operation, is available. The SV-10 has a built-in function to perform an automatic temperature compensation on the viscosity value, based on the temperature of the purified water used.
- In one-point and two-point calibration, the viscosity of a fluid with a known value, such as a standard viscosity fluid, is measured, displayed, corrected digitally and saved in memory.
- To obtain the absolute viscosity value precisely, use the correction value as described in "4-4-2 At Calibration".
- If the wrong calibration data such as a correction value have been entered, the viscometer condition can be restored. For details, refer to "Initialization (Clr)" of the function setting.

6-1 Notes on Viscosity Calibration

- Pay close attention to the liquid temperature at calibration. Be sure to enter the viscosity value of the liquid temperature at calibration. Even a standard viscosity fluid has a viscosity change of -2%/°C to -10%/°C, and purified water, a viscosity change of -2%/°C, when the room temperature changes.
- The temperature of the standard viscosity fluid must be the same as the temperature of the sensor plates and the temperature sensor. Allow the displayed temperature to stabilize before calibration.
- Be sure to adjust the sample surface to the center of the narrow part of the sensor plates. Otherwise, a measurement error may occur.
- In the calibration mode, the unit of viscosity for the SV-10 is mPa\cdot s, for the SV-100, Pas. The unit of temperature is fixed to °C.
- The viscometer has been calibrated with the protector attached when shipped. Please note that the value, obtained when the viscometer is calibrated without the protector, may be different from that upon shipment.
- If water other than purified water (such as tap water) is used for simplified calibration, or the water temperature is different from the ambient temperature, bubbles may accumulate on the sensor plates and cause a measurement error. Allow the sample to adjust to the ambient temperature and remove any accumulated bubbles before calibration.
- If the measured viscosity of the water is 3.00 mPa\cdot s or greater, it is contaminated and simplified calibration can not be performed using it. Replace the water.
6-2 Calibration Procedure

Note
As to the correction value used for one-point calibration and two-point calibration, enter the product of the absolute viscosity value and the density of the standard viscosity fluid. For details, refer to "4-4-2 At Calibration". After calibration, check the values, comparing the product described above with the displayed value.

\[
\text{Kinetic viscosity} = \frac{\text{Viscosity}}{\text{Density}} \quad \text{From this, } \frac{\text{Viscosity} \times \text{Density}}{\text{Kinetic viscosity}} = \frac{\text{Viscosity}^2}{\text{Kinetic viscosity}} \quad \text{is obtained.}
\]

Example 1: To calibrate the viscometer using a standard viscosity fluid:
Using the calculation sheet, calculate the value used for calibration.

(1) Check the kinetic viscosity and the viscosity at the temperature when the calibration is performed.
Here, 1011 mm²/s for the kinetic viscosity and 889 mPa·s for the viscosity at 20°C as an example.

(2) Substitute the values above to obtain the value for \(\frac{\text{Viscosity}^2}{\text{Kinetic viscosity}} \).
\[
\frac{889^2}{1011} \approx 781
\]
781 mPa·s is obtained as a correction value used for calibration.

Example 2: To calibrate using a standard viscosity fluid with known values of viscosity and density. In this example, a standard viscosity fluid with a viscosity of 889 mPa·s at 20°C is used.

(1) Check the viscosity value and the density of the standard viscosity fluid at the temperature when the calibration is performed.
Here, 889 mPa·s for the viscosity and 0.878 for the density at 20°C as an example.

(2) Substitute the values above to obtain the value for Viscosity \(\times \) Density.
\[
889 \times 0.878 \approx 781
\]
781 mPa·s is obtained as a correction value used for calibration.
6-2-1 One-point Calibration

1. In the standby mode, press and hold the HOLD key to enter the calibration mode. "CAL" appears.

2. Select one-point calibration (CAL-1) and press the PRINT key to confirm. The standby mode of the one-calibration mode appears. Use the MODE key to switch between the calibration modes, one-point calibration (CAL-1) or two-point calibration (CAL-2). Press the STOP key to exit the calibration mode. The display returns to the standby mode.

3. Place the standard viscosity fluid in the sample cup. Press the START key to start a measurement.

4. After the measurement, wait for the display to become stable and press the PRINT key. The measurement value blinks and is ready to be corrected.

5. Correct the value using the following keys:
 - MODE key: Switches the blinking digits.
 - START key: Changes the setting of a blinking digit.
 - STOP key: Moves the decimal point.

6. Press the PRINT key to confirm the correction value.

7. To exit the calibration mode:
 - With "End" being displayed, press the PRINT key again to return to the standby mode.
 - To correct the value:
 - With "End" being displayed, press the STOP key and correct the value.

8. Measure the viscosity of the standard viscosity fluid used. Confirm that the viscometer displays the similar value as the entered correction value.

The below is an example of the SV-10.
For the SV-100, the unit is Pas.
6-2-2 Two-point Calibration

1. In the standby mode, press and hold the HOLD key to enter the calibration mode. "CAL" appears.

2. Select two-point calibration (Cal-2) and press the PRINT key to confirm. The standby mode of the two-calibration mode appears. Use the MODE key to switch between the calibration modes, one-point calibration (Cal-1) or two-point calibration (Cal-2). Press the STOP key to exit the calibration mode. The display returns to the standby mode.

3. In two-point calibration mode, the calibration mode ID indicator (-) appears below the temperature display.

4. Place the standard viscosity fluid in the sample cup. Press the START key to start the measurement of the first point.

5. After the measurement, wait for the display to become stable and press the PRINT key. The measurement value blinks and is ready to be corrected.

6. Correct the value using the following keys:
 - MODE key: Switches the blinking digits.
 - START key: Changes the setting of a blinking digit.
 - STOP key: Moves the decimal point.

7. Press the PRINT key to confirm the correction value.

8. To correct the value:
 - In the calibration standby mode to enter the second point, press the STOP key and correct the value.

The below is an example of the SV-10. For the SV-100, the unit is Pa s.
9 When the measurement of the first point has completed, clean the sensor plates, temperature sensor and protector and prepare the second standard viscosity fluid.

10 Place the second standard viscosity fluid in the sample cup. Press the [START] key to start the measurement of the second point.

11 After the measurement, wait for the display to become stable and press the [PRINT] key. The measurement value blinks and is ready to be corrected.

12 Correct the value using the following keys:
 - [MODE] key: Switches the blinking digits.
 - [START] key: Changes the setting of a blinking digit.
 - [STOP] key: Moves the decimal point.

13 Press the [PRINT] key to confirm the correction value.

14 To exit the calibration mode:
 With "End" being displayed, press the [PRINT] key again. The calibration data is saved and the display returns to the standby mode.

 \[\text{To correct the value:} \]
 With "End" being displayed, press the [STOP] key and correct the value.

15 Measure the viscosity of the two standard viscosity fluids used. Confirm that the viscometer displays the similar value as the entered correction value for each fluid.

From the previous page

Set standard viscosity fluid

From the previous page

Set standard viscosity fluid

(Second point measurement mode)

When the data is stabilized

(Correct the second point value)

To correct

(End of two-point calibration)

(Standby mode)

(Confirm the value of the first fluid)

(Confirm the value of the second fluid)
6-2-3 Simplified Calibration Using Purified Water (SV-10 only)

1. Place the purified water in the sample cup.

2. Press the **START** key to measure the purified water. Confirm that the viscosity and temperature values are stabilized.

3. Press and hold the **START** key. The theoretical viscosity value (Viscosity × Density) of the purified water at the measuring temperature is displayed and all the displays blink.

 To cancel the operation, press the **STOP** key. The display returns to the status before calibration.

4. Press the **START** key again to perform calibration. When calibration is completed, "End" is displayed. Then, the viscosity returns to the measurement mode.
Reference data: Theoretical viscosity value (Viscosity \times Density) of the purified water at various temperatures

<table>
<thead>
<tr>
<th>Temperature ($^\circ$C)</th>
<th>Viscosity \times Density (mPa\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>1.31</td>
</tr>
<tr>
<td>11.0</td>
<td>1.27</td>
</tr>
<tr>
<td>12.0</td>
<td>1.24</td>
</tr>
<tr>
<td>13.0</td>
<td>1.20</td>
</tr>
<tr>
<td>14.0</td>
<td>1.17</td>
</tr>
<tr>
<td>15.0</td>
<td>1.14</td>
</tr>
<tr>
<td>16.0</td>
<td>1.11</td>
</tr>
<tr>
<td>17.0</td>
<td>1.08</td>
</tr>
<tr>
<td>18.0</td>
<td>1.05</td>
</tr>
<tr>
<td>19.0</td>
<td>1.03</td>
</tr>
<tr>
<td>20.0</td>
<td>1.00</td>
</tr>
<tr>
<td>21.0</td>
<td>0.98</td>
</tr>
<tr>
<td>22.0</td>
<td>0.95</td>
</tr>
<tr>
<td>23.0</td>
<td>0.93</td>
</tr>
<tr>
<td>24.0</td>
<td>0.91</td>
</tr>
<tr>
<td>25.0</td>
<td>0.89</td>
</tr>
<tr>
<td>26.0</td>
<td>0.87</td>
</tr>
<tr>
<td>27.0</td>
<td>0.85</td>
</tr>
<tr>
<td>28.0</td>
<td>0.83</td>
</tr>
<tr>
<td>29.0</td>
<td>0.81</td>
</tr>
<tr>
<td>30.0</td>
<td>0.79</td>
</tr>
</tbody>
</table>
7. FUNCTION SETTING

The viscometer, by selecting functions to be used in the function setting, can specify the performance appropriate to the usage.

Each function is assigned parameters. The performance of a function is specified by changing the parameter.

The parameters saved, even if the power is turned off, are maintained in non-volatile memory.

7-1 Operation

The operational procedure of the function setting is as follows:

1. In the standby mode, press and hold the **MODE** key to enter the function setting mode.
2. Press the **MODE** key to select a function item.
3. Press the **PRINT** key to confirm the function item. The changeable digit blinks.
4. Press the **START** key or **HOLD** key to change the blinking digit.
 - **START** key: Increases the value of the blinking digit. When the value reaches the upper limit of the setting range, the minimum value appears again.
 - **HOLD** key: Decreases the value of the blinking digit. When the value reaches the lower limit of the setting range, the maximum value appears again.
5. To save the new setting, press the **PRINT** key. After "End ", the next item is displayed. To cancel the new setting, press the **STOP** key. The next item is displayed.
6. To change other settings, repeat the procedure starting at step 2.
7. To exit the function setting mode, press the **STOP** key. The viscometer returns to the standby mode.

Note

The operational procedures for setting the date and time ("ClrDd"), ID number ("Id") and initialization ("Clr") are not the same as the procedure described above. Refer to "7-3 Description of Items".

"Date/Time" pages 31-33
"Device ID Number" pages 37-38
Example of the function setting procedure

Using the SV-10, to change the setting of "Unit upon power-on (Unit)" to the viscosity: cP (Centipoise) and the temperature: °C (Celsius).

1. In the standby mode, press and hold the `MODE` key to enter the function setting mode. "CLRdJu" appears.

2. Press the `MODE` key to select "Unit".

3. Press the `PRINT` key to confirm the item. (The decimal point illuminates when the setting currently saved is displayed.)

4. Press the `START` key or `HOLD` key to select the unit to be used. (In this example, "2" is selected. Viscosity: cP, Temperature: °C)

5. Press the `PRINT` key to save the setting. After "End", the next item is displayed.

6. Press the `STOP` key to return to the standby mode.
7-2 Details of the Function Items

<table>
<thead>
<tr>
<th>Function item</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time</td>
<td></td>
<td>Sets the order of the date (YMD,MDY,DMY) and the date/time.</td>
</tr>
<tr>
<td>Condition</td>
<td>0</td>
<td>Follows the viscosity changes quickly. (Prone to vibration)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Follows the viscosity changes slowly. (Stable values)</td>
</tr>
<tr>
<td>Unit upon power-on</td>
<td>0</td>
<td>Viscosity units: mPas, Pas, cP, P, mPa, Pa, s, °C. Factory setting: SV-10=0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>With “Comma” selected, the separator for CSV format will be “;” (semicolon).</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0</td>
<td>• Dot</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>• Comma</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>• Switches viscosity units.</td>
</tr>
<tr>
<td>Fnc</td>
<td>0</td>
<td>• Switches between the temperature display and the measurement elapsed time display.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>• Key mode</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>• Auto print mode</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>• Stream mode</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>• A&D standard format</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>• CSV format</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>• RsVisco format</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>• No output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Press the [PRINT] key to output data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outputs automatically when the [STOP] key ends the measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous output during measurement. Outputs the viscosity only when D.P. format is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outputs the temperature only when D.P. format is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only for D.P. format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only for D.P. and CSV formats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only for CSV format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only for CSV format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No pause</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pause (Approx. 2 seconds)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usually use this parameter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set the device ID number.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restores the function settings and calibration data to the factory setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With “5-Ed”, the device ID information is added to the measurement data.</td>
</tr>
</tbody>
</table>

- Factory setting
7-3 Description of Items

Date/Time (CLRdu)

- The upper two digits of the year are not displayed. For example, the year 2003 is displayed as "03".
- The time is set using the 24-hour system.
- Do not enter a non-existing date and time.

Set the order of the date, the date and time as follows:
(Example: To change April 5, 2003, 11:22:33 to June 8, 2004, 12:34:00)

1. In the standby mode, press and hold the [MODE] key to enter the function setting mode. "CLRdu" appears.

2. Press the [PRINT] key to display the current date. When the date is not to be changed, press the [MODE] key to display the current time.

Changing the order of the date

3. Press the [PRINT] key. "y" (Year), "m" (Month) and "d" (Day) blink.

4. Press the [START] key or [HOLD] key to change the order of displaying the date.

Continued on the next page
Changing the date

The date is changed in the selected displaying order.
The following is an example when the order of "y" (Year), "m" (Month) and "d" (Day) is selected.

5 Press the MODE key to select the setting value of "y" (Year). (Example:03)

6 Press the START key or HOLD key to change the year. (Example:03→04)
 START key Increases the value of the blinking digit by one.
 HOLD key Decreases the value of the blinking digit by one.

7 Press the MODE key to select the setting value of "m" (Month). (Example:04)

8 Press the START key or HOLD key to change the month. (Example:04→06)

9 Press the MODE key to select the setting value of "d" (Day). (Example:05)

10 Press the START key or HOLD key to change the day. (Example:05→08)

11 Press the PRINT key to save the date.
 After "End", the current time is displayed.

From the previous page

| Press the MODE key to select the setting value of "y" (Year). (Example:03) |
| Press the START key or HOLD key to change the year. (Example:03→04) |
| Press the MODE key to select the setting value of "m" (Month). (Example:04) |
| Press the START key or HOLD key to change the month. (Example:04→06) |
| Press the MODE key to select the setting value of "d" (Day). (Example:05) |
| Press the START key or HOLD key to change the day. (Example:05→08) |
| Press the PRINT key to save the date. |

Continued on the next page
Changing the time

12 The current time is displayed. Press the **MODE** key to display the current date.

13 Press the **PRINT** key to select the setting value of the hour. (Example: 11)

14 Press the **START** key or **HOLD** key to change the hour. (Example: 11 → 12)

15 Press the **MODE** key to select the setting value of the minute. (Example: 22)

16 Press the **START** key or **HOLD** key to change the minute. (Example: 22 → 34)

17 Press the **MODE** key to select the setting value of the second. (Example: 33)

18 Press the **START** key or **HOLD** key to change the second. (Example: 33 → 00)

19 Press the **PRINT** key to save the time.
 After "End ", the next item is displayed.

20 Press the **STOP** key to return to the standby mode.
Condition (Cond)
The stability of the viscosity measurement results can be adjusted, taking ambient conditions such as vibration into consideration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Follows the viscosity changes quickly. (Prone to vibration)</td>
<td>When the viscosity value is unstable due to external vibration, set a greater parameter. To measure while following the rapid changes in viscosity, set a smaller parameter. With a smaller setting, the measurement is prone to external vibration. Consider the ambient conditions of the installation site.</td>
</tr>
<tr>
<td>1</td>
<td>▼, ▲</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Follows the viscosity changes slowly. (Stable values)</td>
<td></td>
</tr>
</tbody>
</table>

Unit Upon Power-on (Unit)
The units of viscosity and temperature displayed when the power is turned on are specified.

SV-10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>mPa⋅s (Millipascal second)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pa⋅s (Pascal second)</td>
<td>°C (Celsius)</td>
</tr>
<tr>
<td>2</td>
<td>cP (Centipoise)</td>
<td>°F (Fahrenheit)</td>
</tr>
<tr>
<td>3</td>
<td>P (Poise)</td>
<td>In the standby mode, pressing the MODE key switches the viscosity unit. mPa⋅s ↔ Pa⋅s, cP ↔ P</td>
</tr>
<tr>
<td>4</td>
<td>mPa⋅s (Millipascal second)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pa⋅s (Pascal second)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>cP (Centipoise)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>P (Poise)</td>
<td>With °fnc 0 selected, units can be switched even during measurement. *1</td>
</tr>
</tbody>
</table>

SV-100

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pa⋅s (Pascal second)</td>
<td>°C (Celsius)</td>
</tr>
<tr>
<td>3</td>
<td>P (Poise)</td>
<td>In the standby mode, pressing the MODE key switches the viscosity unit. Pa⋅s ↔ P</td>
</tr>
<tr>
<td>5</td>
<td>Pa⋅s (Pascal second)</td>
<td>°F (Fahrenheit)</td>
</tr>
<tr>
<td>7</td>
<td>P (Poise)</td>
<td>With °fnc 0 selected, units can be switched even during measurement. *1</td>
</tr>
</tbody>
</table>

*1 While the measurement is being performed using the graphing program RsVisco, unit changes using the MODE key is not available. With the SV-10, for a viscosity over 1000 mPa⋅s, the unit is fixed to Pa⋅s, and for a viscosity over 1000 cP, the unit is fixed to P.
Decimal Point (\(P_{nt}\))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dot (\cdot)</td>
<td>The decimal point format for the displayed measurement data and the decimal point code for measurement data output via RS-232C are specified.</td>
</tr>
<tr>
<td>1</td>
<td>Comma (\ ,)</td>
<td>With "Comma" selected, the separator for CSV format and RsVisco format will be (\ ,) (semicolon).</td>
</tr>
</tbody>
</table>

MODE Key Function During Measurement (\(F_{nc}\))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Switches the viscosity units.</td>
<td>Each time the MODE key is pressed, the viscosity unit is switched. SV-10: mPa(\cdot)s ⇔ Pa(\cdot)s, cP ⇔ P sv-100: Pa(\cdot)s ⇔ P</td>
</tr>
<tr>
<td>1</td>
<td>Switches between the temperature display and the measurement elapsed time display</td>
<td>Each time the MODE key is pressed, the display is switched between the temperature display and the measurement elapsed time display. Upon a measurement start, the temperature display is selected. When the elapsed time reaches 100 hours, the display returns to 0. (99.59.59 → 00.00.00)</td>
</tr>
</tbody>
</table>

Data Output Mode (\(P_{rt}\))

The condition to output the measurement data via RS-232C is set.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Key mode</td>
<td>During measurement or in the data hold mode, pressing the PRINT key outputs the current measurement values. *2</td>
</tr>
<tr>
<td>1</td>
<td>Auto print mode</td>
<td>The measurement values are output automatically when the STOP key ends the measurement. Pressing the PRINT key outputs the current measurement values. *2</td>
</tr>
<tr>
<td>2</td>
<td>Stream mode</td>
<td>The measurement values are output continuously during measurement. When D.P. format is selected in "Output format ((\text{Type}))" of the function setting, only the viscosity value is output, regardless of the settings of "(S\cdot A\ell), "(S\cdot E\ell)" and "(S\cdot E\ell)". When this mode is selected, the data hold mode using the HOLD key is not available.</td>
</tr>
</tbody>
</table>

*2 When A&D standard format is selected in "Output format (\(\text{Type}\))" of the function setting, pressing the PRINT key in the standby mode will not output the measurement data.
Data Output Format (ptyPE)

The output format appropriate for the device connected to RS-232C can be selected.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A&D standard format</td>
<td>Used with the printer MODE 1 or MODE 2 when the optional compact printer, AD-8121B is connected. Only the viscosity value is output.</td>
</tr>
<tr>
<td>1</td>
<td>D.P. format</td>
<td>Used with the printer MODE 3 when the optional compact printer, AD-8121B is connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With "prt 0" or "prt 1" selected for "Data output mode (prt)", output contents can be selected by the settings of "s - t - d" and "s - E d".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With "prt 2" selected for "Data output mode (prt)", only the viscosity value is output.</td>
</tr>
<tr>
<td>2</td>
<td>CSV format</td>
<td>Appropriate when a personal computer is used to collect data. Measurement values are output in comma separated format.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With "s - t - d" and "id" settings, the date/time and ID number can be added to the measurement data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When a comma is selected as the decimal point by "pnt 1", a semicolon ";" is used as a data separator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The viscosity value and the temperature are output using the internal resolution.</td>
</tr>
<tr>
<td>3</td>
<td>RsVisco format</td>
<td>Used with the graphing program RsVisco.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When a measurement is started using RsVisco, the viscometer automatically selects this format.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The viscosity value and the temperature are output using the internal resolution.</td>
</tr>
</tbody>
</table>

*3 The relation between the measuring unit and the internal resolution is as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Viscosity</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mPa·s</td>
<td>Pa·s</td>
</tr>
<tr>
<td>Internal</td>
<td>0.01</td>
<td>0.0001</td>
</tr>
<tr>
<td>resolution</td>
<td>SV-10</td>
<td>SV-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurement Elapsed Time Output (s - t - E t)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No output</td>
<td>With D.P. format selected, whether or not to add the measurement elapsed time (the time elapsed from a measurement start) to the measurement data can be selected.</td>
</tr>
<tr>
<td>1</td>
<td>Output</td>
<td>For examples of output format, refer to "7-4 Data Output Format Examples".</td>
</tr>
</tbody>
</table>
Date/time Output (5-Ed)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No output</td>
<td>With D.P. format or CSV format selected, whether or not to add the date and time to the measurement data can be selected.</td>
</tr>
<tr>
<td>1</td>
<td>Output</td>
<td>For examples of output format, refer to "7-4 Data Output Format Examples".</td>
</tr>
</tbody>
</table>

Other Output (5-Ed)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No output</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Outputs remarks.</td>
<td>With D.P. format selected, whether or not to add remarks, Device ID information or signature to the measurement data can be selected. For examples of output format, refer to "7-4 Data Output Format Examples".</td>
</tr>
<tr>
<td>2</td>
<td>Outputs remarks, Device ID information and signature.</td>
<td>With CSV format selected, whether or not to add ID number to the measurement data can be selected. For examples of output format, refer to "7-4 Data Output Format Examples".</td>
</tr>
<tr>
<td>3</td>
<td>Outputs ID number.</td>
<td></td>
</tr>
</tbody>
</table>

Pause at Data Output (PUSE)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No pause</td>
<td>Whether or not to take a pause of two seconds each time one line is output can be selected, when the data are output via RS-232C.</td>
</tr>
<tr>
<td>1</td>
<td>Pause (Approx. 2 seconds)</td>
<td>When MODE 3 of the optional compact printer, AD-8121B is used, select " ".</td>
</tr>
</tbody>
</table>

Device ID Number (id)

- The ID number is used to identify the viscometer.
- Whether or not to add the ID number to the measurement data can be selected by "5-Ed" of the function setting.
- The ID number is six characters long. The following characters are available for the ID number.

<table>
<thead>
<tr>
<th>Character</th>
<th>0 1 2 3 4 5 6 7 8 9 (Space) (hyphen) A B C D E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>0 1 2 3 4 5 6 7 8 9 (Space) (hyphen) A B C D E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Character</th>
<th>F G H I J K L M N O P Q R S T U V W X Y Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>F G H I J K L M N O P Q R S T U V W X Y Z</td>
</tr>
</tbody>
</table>

For examples of output format, refer to "7-4 Data Output Format Examples".
Setting the ID number

1. In the standby mode, press and hold the MODE key to enter the function setting mode. "CLRdU" appears.

2. Press the MODE key to select "id".

3. Press the PRINT key to enter the ID number setting mode.

4. Set the ID number using the following keys:
 - MODE key: Switches the blinking digits.
 - START key: Increases the value of the blinking digit by one.
 - HOLD key: Decreases the value of the blinking digit by one.
 - STOP key: Cancel the operation.

5. Press the PRINT key to save the setting. After "End", the next item is displayed.

6. Press the STOP key to return to the standby mode.
Initialization (CLR)

Restores the following data to the default setting.

- Function setting
- Calibration data

After initialization, check the viscosity value and perform calibration as necessary. (Refer to 6. VISCOSITY CALIBRATION).

1. In the standby mode, press and hold the MODE key to enter the function setting mode. "CLRdU " appears.

2. Press the MODE key to select "CLR ."

3. Press the PRINT key to display "CLR no ."

4. Press the START key to select "CLR go ."

5. Press the PRINT key to execute initialization. After "End ", the next item is displayed. Initialization has completed.

6. Press the STOP key to return to the standby mode.
7-4 Data Output Format Examples

7-4-1 A&D Standard Format
Used with the printer MODE 1 or MODE 2 when the optional compact printer, AD-8121B is connected. Only the viscosity value is output.

SV-10 output format example

<table>
<thead>
<tr>
<th>Viscosity unit</th>
<th>Display</th>
<th>Output format</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPa·s</td>
<td>L</td>
<td>OL, -99999999mPs</td>
<td>Below measuring range error</td>
</tr>
<tr>
<td></td>
<td>0.30mPa·s</td>
<td>ST, +00000.30mPs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0 mPa·s</td>
<td>ST, +00010.00mPs</td>
<td>The digit of 0.01mPa·s is always zero.</td>
</tr>
<tr>
<td></td>
<td>100 mPa·s</td>
<td>ST, +00100.00mPs</td>
<td>The digits of 0.01mPa·s and 0.1mPa·s are always zero.</td>
</tr>
<tr>
<td></td>
<td>1.00 Pa·s</td>
<td>ST, +01000.00mPs</td>
<td>For 1000mPa·s or greater, the displayed unit is Pa·s, but the output unit remains mPa·s. The digits of 0.01mPa·s, 0.1mPa·s and 1mPa·s are always zero.</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>OL, +99999999mPs</td>
<td></td>
</tr>
<tr>
<td>Pa·s</td>
<td>L</td>
<td>OL, -99999999Pas</td>
<td>Below measuring range error</td>
</tr>
<tr>
<td></td>
<td>0.0003 Pa·s</td>
<td>ST, +000.0003Pas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0100 Pa·s</td>
<td>ST, +000.0100Pas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.100 Pa·s</td>
<td>ST, +000.1000Pas</td>
<td>The digit of 0.0001Pa·s is always zero.</td>
</tr>
<tr>
<td></td>
<td>1.00 Pa·s</td>
<td>ST, +001.0000Pas</td>
<td>The digits of 0.0001Pa·s and 0.001Pa·s are always zero.</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>OL, +99999999Pas</td>
<td>Above measuring range error</td>
</tr>
<tr>
<td>cP</td>
<td>L</td>
<td>OL, -99999999cP</td>
<td>Below measuring range error</td>
</tr>
<tr>
<td></td>
<td>0.30 cP</td>
<td>ST, +00000.30cP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0 cP</td>
<td>ST, +00010.00cP</td>
<td>The digit of 0.01cP is always zero.</td>
</tr>
<tr>
<td></td>
<td>100 cP</td>
<td>ST, +00100.00cP</td>
<td>The digits of 0.01cP and 0.1cP are always zero.</td>
</tr>
<tr>
<td></td>
<td>10.0 P</td>
<td>ST, +01000.00cP</td>
<td>For 1000 cP or greater, the displayed unit is P, but the output unit remains cP. The digits of 0.01cP, 0.1cP and 1cP are always zero.</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>OL, +99999999cP</td>
<td>Above measuring range error</td>
</tr>
</tbody>
</table>

P	L	OL, -99999999μP	Below measuring range error
	0.0030 P	ST, +000.0030μP	
	0.100 P	ST, +000.1000μP	The digit of 0.0001μP is always zero.
	1.00 P	ST, +001.0000μP	The digits of 0.0001μP and 0.001μP are always zero.
	10.0 P	ST, +010.0000μP	The digits of 0.0001μP, 0.001μP and 0.01P are always zero.
	H	OL, +99999999μP	Above measuring range error

Space (ASC 20h)
SV-100 output format example

<table>
<thead>
<tr>
<th>Viscosity unit</th>
<th>Display</th>
<th>Output format</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa·s</td>
<td>L</td>
<td>OL, -99999999Pa·s</td>
<td>Below measuring range error</td>
</tr>
<tr>
<td></td>
<td>1.00 Pa·s</td>
<td>ST, +00001.00Pa·s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0 Pa·s</td>
<td>ST, +00010.00Pa·s</td>
<td>The digit of 0.01Pa·s is always zero.</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>OL, +99999999Pa·s</td>
<td>Above measuring range error</td>
</tr>
<tr>
<td>P</td>
<td>L</td>
<td>OL, -99999999Pa</td>
<td>Below measuring range error</td>
</tr>
<tr>
<td></td>
<td>10.0 P</td>
<td>ST, +000010.00Pa</td>
<td>The digit of 0.1Pa is always zero.</td>
</tr>
<tr>
<td></td>
<td>100 P</td>
<td>ST, +000100.00Pa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>OL, +99999999Pa</td>
<td>Above measuring range error</td>
</tr>
</tbody>
</table>

*: Space (ASC 20h)
7-4-2 D.P. Format

Used with the printer MODE 3 when the optional compact printer, AD-8121B is connected.

With "prt 0" or "prt 1" selected for "Data output mode (Prt)", output contents can be selected by the settings of "5-at", "5-td" and "5-Ed".

With "prt 2" selected for "Data output mode (Prt)", only the viscosity value is output

Shown below are SV-10 printing examples.

Printing format example (1)

<table>
<thead>
<tr>
<th>Function setting</th>
<th>Blank=No output</th>
<th>(√=Output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-At 1</td>
<td>Measurement elapsed time</td>
<td>√</td>
</tr>
<tr>
<td>5-Td 1</td>
<td>Date/time</td>
<td>√</td>
</tr>
<tr>
<td>5-Ed 2</td>
<td>Remarks</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td>Device ID information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

Printing format example (2)

<table>
<thead>
<tr>
<th>Function setting</th>
<th>Blank=No output</th>
<th>(√=Output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-At 1</td>
<td>Measurement elapsed time</td>
<td>√</td>
</tr>
<tr>
<td>5-Td 1</td>
<td>Date/time</td>
<td>√</td>
</tr>
<tr>
<td>5-Ed 1</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device ID information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

Printing format example (3)

<table>
<thead>
<tr>
<th>Function setting</th>
<th>Blank=No output</th>
<th>(√=Output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-At 1</td>
<td>Measurement elapsed time</td>
<td>√</td>
</tr>
<tr>
<td>5-Td 1</td>
<td>Date/time</td>
<td>√</td>
</tr>
<tr>
<td>5-Ed 0</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device ID information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

(*) The displaying order of the date (YMD/DMY/MDY) depends on the setting of "Date/Time (Calendar)".
7-4-3 CSV Format

Appropriate when a personal computer is used to collect data. Measurement values are output in comma separated format.

With "5-td" setting, the date and time can be added to the measurement data.

When a comma is selected as the decimal point by "Pnt 1", a semicolon ";" is used as a data separator.

With CSV format selected, the viscosity value and the temperature are output using the internal resolution.

The relation between the measuring unit and the internal resolution is as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Viscosity</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mPa·s</td>
<td>Pa·s</td>
</tr>
<tr>
<td>Internal</td>
<td>0.01</td>
<td>0.0001</td>
</tr>
<tr>
<td>resolution</td>
<td>SV-10</td>
<td></td>
</tr>
<tr>
<td>SV-100</td>
<td>-</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Output format example (1) With ID number, date and time added

<table>
<thead>
<tr>
<th>Function setting</th>
<th>Date/time</th>
<th>Device ID number</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-td 1</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>S-Ed 3</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

Outputs in the order of ID number, date, time, temperature, temperature unit, viscosity and viscosity unit.

The output data are 52 characters long excluding the terminator.

SV-10 output format example

<table>
<thead>
<tr>
<th>Viscosity / Temperature</th>
<th>Display</th>
<th>Output format example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>L mPa·s</td>
<td>LAB-12,2003/03/19,12:34:56,+000.000.00,mPa·s</td>
<td>Zeroes are output for below measuring range error.</td>
<td></td>
</tr>
<tr>
<td>0.0003 Pa·s</td>
<td>LAB-12,2003/03/19,12:34:56,+000.000.003,Pa·s</td>
<td>For 1000 mPa·s or greater, the displayed unit is Pa·s, but the output unit remains mPa·s.</td>
<td></td>
</tr>
<tr>
<td>0.100 Pa·s</td>
<td>LAB-12,2003/03/19,12:34:56,+000.000.100,Pa·s</td>
<td>12000 is output for above measuring range error.</td>
<td></td>
</tr>
<tr>
<td>H Pa·s</td>
<td>LAB-12,2003/03/19,12:34:56,+12000.00,Pa·s</td>
<td>12 is output for above measuring range error.</td>
<td></td>
</tr>
<tr>
<td>L cP</td>
<td>LAB-12,2003/03/19,12:34:56,+000.000.00,cP</td>
<td>Zeroes are output for below measuring range error.</td>
<td></td>
</tr>
<tr>
<td>0.0030 cP</td>
<td>LAB-12,2003/03/19,12:34:56,+000.000.030,cP</td>
<td>For 1000 cP or greater, the displayed unit is P, but the output unit remains cP.</td>
<td></td>
</tr>
<tr>
<td>0.100 cP</td>
<td>LAB-12,2003/03/19,12:34:56,+000.000.100,cP</td>
<td>12000 is output for above measuring range error.</td>
<td></td>
</tr>
<tr>
<td>H P</td>
<td>LAB-12,2003/03/19,12:34:56,+12000.00,cP</td>
<td>120 is output for above measuring range error.</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{\textbackslash n}: \text{Space (ASC 20h)}\]
SV-100 output format example

<table>
<thead>
<tr>
<th>Viscosity / Temperature</th>
<th>Display</th>
<th>Output format example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa·s / °C</td>
<td>L</td>
<td>LAB-12,2003/03/19,12:34:56,+025.67,0,C,+000000.00,Pa·s</td>
<td>Zeros are output for below measuring range error.</td>
</tr>
<tr>
<td>H</td>
<td>P</td>
<td>LAB-12,2003/03/19,12:34:56,+00120.00,Pa·s</td>
<td>120 is output for above measuring range error.</td>
</tr>
</tbody>
</table>

| P / °F | L | LAB-12,2003/03/19,12:34:56,+051.23,F,+000000.00,P | Zeros are output for below measuring range error. |
| H | P | LAB-12,2003/03/19,12:34:56,+001200.00,P | 1200 is output for above measuring range error. |

[^]: Space (ASC 20h)
Output format example (2) With date and time added

<table>
<thead>
<tr>
<th>Function setting</th>
<th>Output format example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{ } = \text{Output})</td>
<td>Outputs in the order of date, time, temperature, temperature unit, viscosity and viscosity unit. (\sqrt{ } = \text{Output}) (\text{Blank} = \text{No output})</td>
</tr>
<tr>
<td>Date/time (S \cdot Ed)</td>
<td>(\right</td>
</tr>
<tr>
<td>Date/time (S \cdot Ed)</td>
<td>(\right</td>
</tr>
<tr>
<td>Device ID number (S \cdot Ed)</td>
<td>(\right</td>
</tr>
</tbody>
</table>

Outputs in the order of date, time, temperature, temperature unit, viscosity and viscosity unit. The output data are 46 characters long excluding the terminator.

SV-10 output format example

<table>
<thead>
<tr>
<th>Viscosity / Temperature</th>
<th>Display</th>
<th>Output format example</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPa(s)/°C</td>
<td>1.23 mPa(s)</td>
<td>,2003/03/19,12:34:56,+025.67,C,+00001.23,mPa(s)</td>
</tr>
</tbody>
</table>

SV-100 output format example

<table>
<thead>
<tr>
<th>Viscosity / Temperature</th>
<th>Display</th>
<th>Output format example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa(s)/°C</td>
<td>1.23 Pa(s)</td>
<td>,2003/03/19,12:34:56,+025.67,C,+00001.23,Pa(s)</td>
</tr>
</tbody>
</table>

Output format example (3) To output the measured temperature and viscosity only

<table>
<thead>
<tr>
<th>Function setting</th>
<th>Output format example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{ } = \text{Output})</td>
<td>Outputs in the order of temperature, temperature unit, viscosity and viscosity unit. (\sqrt{ } = \text{Output}) (\text{Blank} = \text{No output})</td>
</tr>
<tr>
<td>Date/time (S \cdot Ed)</td>
<td>(\right</td>
</tr>
<tr>
<td>Date/time (S \cdot Ed)</td>
<td>(\right</td>
</tr>
<tr>
<td>Device ID number (S \cdot Ed)</td>
<td>(\right</td>
</tr>
</tbody>
</table>

Outputs in the order of temperature, temperature unit, viscosity and viscosity unit. The output data are 28 characters long excluding the terminator.

SV-10 output format example

<table>
<thead>
<tr>
<th>Viscosity / Temperature</th>
<th>Display</th>
<th>Output format example</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPa(s)/°C</td>
<td>1.23 mPa(s)</td>
<td>,00001.23,Pa(s)</td>
</tr>
</tbody>
</table>

SV-100 output format example

<table>
<thead>
<tr>
<th>Viscosity / Temperature</th>
<th>Display</th>
<th>Output format example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa(s)/°C</td>
<td>1.23 Pa(s)</td>
<td>,00001.23,Pa(s)</td>
</tr>
</tbody>
</table>
7-4-4 RsVisco Format

Used with the graphing program RsVisco. Measurement data are output in comma separated format. When a comma is selected as the decimal point by "pnt 1", a semicolon ";" is used as a data separator.

When a measurement is started using RsVisco, the viscometer automatically selects this format.

Measurement data are output in the order of viscosity, viscosity unit, temperature and temperature unit.

The output data are 25 characters long excluding the terminator.

With RsVisco format selected, the viscosity value and the temperature are output using the internal resolution.

The relation between the measuring unit and the internal resolution is as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>Viscosity</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mPa·s</td>
<td>Pa·s</td>
</tr>
<tr>
<td>Internal resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV-10</td>
<td>0.01</td>
<td>0.0001</td>
</tr>
<tr>
<td>SV-100</td>
<td>-</td>
<td>0.01</td>
</tr>
</tbody>
</table>

SV-10 output format example

<table>
<thead>
<tr>
<th>Viscosity / Temperature</th>
<th>Display</th>
<th>Output format example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPa·s / °C</td>
<td>L mPa·s</td>
<td>+00000.00, mPa·s, +025.67, °C</td>
<td>Zeroes are output for below measuring range error.</td>
</tr>
<tr>
<td></td>
<td>0.30 mPa·s</td>
<td>+00000.30, mPa·s, +025.67, °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0 mPa·s</td>
<td>+00010.00, mPa·s, +025.67, °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 mPa·s</td>
<td>+01000.00, mPa·s, +025.67, °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00 Pa·s</td>
<td>+01000.00, mPa·s, +025.67, °C</td>
<td>For 1000 mPa·s or greater, the displayed unit is Pa·s, but the output unit remains mPa·s.</td>
</tr>
<tr>
<td></td>
<td>H Pa·s</td>
<td>+12000.00, mPa·s, +025.67, °C</td>
<td>12000 is output for above measuring range error.</td>
</tr>
<tr>
<td>Pa·s / °F</td>
<td>L Pa·s</td>
<td>+000.0000, Pa·s, +051.23, °F</td>
<td>Zeroes are output for below measuring range error.</td>
</tr>
<tr>
<td></td>
<td>0.0003 Pa·s</td>
<td>+000.0003, Pa·s, +051.23, °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0100 Pa·s</td>
<td>+000.0100, Pa·s, +051.23, °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.100 Pa·s</td>
<td>+000.1000, Pa·s, +051.23, °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00 Pa·s</td>
<td>+001.0000, Pa·s, +051.23, °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H Pa·s</td>
<td>+012.0000, Pa·s, +051.23, °F</td>
<td>12 is output for above measuring range error.</td>
</tr>
<tr>
<td>cP / °C</td>
<td>L cP</td>
<td>+000.0000, cP, +025.67, °C</td>
<td>Zeroes are output for below measuring range error.</td>
</tr>
<tr>
<td></td>
<td>0.30 cP</td>
<td>+00000.30, cP, +025.67, °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0 cP</td>
<td>+00010.00, cP, +025.67, °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 cP</td>
<td>+01000.00, cP, +025.67, °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0 P</td>
<td>+01000.00, cP, +025.67, °C</td>
<td>For 1000 cP or greater, the displayed unit is P, but the output unit remains cP.</td>
</tr>
<tr>
<td></td>
<td>H P</td>
<td>+12000.00, cP, +025.67, °C</td>
<td>12000 is output for above measuring range error.</td>
</tr>
<tr>
<td>P / °F</td>
<td>L P</td>
<td>+000.0000, P, +051.23, °F</td>
<td>Zeroes are output for below measuring range error.</td>
</tr>
<tr>
<td></td>
<td>0.0003 P</td>
<td>+000.0003, P, +051.23, °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.100 P</td>
<td>+000.1000, P, +051.23, °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00 P</td>
<td>+001.0000, P, +051.23, °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.0 P</td>
<td>+010.0000, P, +051.23, °F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H P</td>
<td>+120.0000, P, +051.23, °F</td>
<td>120 is output for above measuring range error.</td>
</tr>
</tbody>
</table>

*: Space (ASC 20h)
SV-100 output format example

<table>
<thead>
<tr>
<th>Viscosity / Temperature</th>
<th>Display</th>
<th>Output format example</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa·s / °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Pa·s</td>
<td>+0000.000, +025.67, C</td>
<td>Zeroes are output for below measuring range error.</td>
</tr>
<tr>
<td>1.00</td>
<td>Pa·s</td>
<td>+0001.000, +025.67, C</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>Pa·s</td>
<td>+0010.000, +025.67, C</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Pa·s</td>
<td>+0120.000, +025.67, C</td>
<td>120 is output for above measuring range error.</td>
</tr>
</tbody>
</table>

P / °F			
L	P	+000000.0, +051.23, F	Zeroes are output for below measuring range error.
10.0	P	+001000.0, +051.23, F	
100	P	+001200.0, +051.23, F	1200 is output for above measuring range error.

*: Space (ASC 20h)
8. CONNECTION TO A PERSONAL COMPUTER

Using the standard RS-232C serial interface and the RS-232C cable provided, the viscometer can be connected to a personal computer.

In addition, using the graphing program RsVisco, contained in the accessory Windows communication tools WinCT-Viscosity, measurement data are imported to a Windows-based personal computer to display a graph in real time.

For details, refer to "\English\ReadMe.txt" on the CR-ROM.
9. CONNECTION TO A PRINTER

- The viscometer can be connected to the optional compact printer, AD-8121B using the standard RS-232C interface and the measurement results can be printed.
- The statistical calculation data of the results and the changes in the viscosity value per a certain time can be printed using the function of the AD-8121B.
- Use the AD-8121B accessory cable to connect the printer to the viscometer.

Setting List

<table>
<thead>
<tr>
<th>What to print</th>
<th>Viscometer function settings</th>
<th>AD-8121B settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P r t</td>
<td>T ype</td>
</tr>
<tr>
<td>Measurement results</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Statistical calculation</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Changes in the viscosity value per a certain time</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

— : Not applicable.

Compact printer, AD-8121B

Connect to RS-232C interface of the viscometer

Accessory cable of AD-8121B
10. SERIAL INTERFACE

RS-232C Serial Interface

- Transmission system: EIA RS-232C
- Transmission form: Asynchronous, bi-directional, half duplex
- Data format:
 - Baud rate: 2400 bps
 - Data bits: 7 bits
 - Parity: EVEN
 - Stop bit: 1 bit
 - Code: ASCII
 - Terminator: CR LF (CR: 0Dh, LF: 0Ah)

Bit format:

Pin Connections

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal Name *1</th>
<th>Description</th>
<th>Direction</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FG</td>
<td>Frame ground</td>
<td>-</td>
<td>FG</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>Receive data</td>
<td>←</td>
<td>TXD</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>Transmit data</td>
<td>→</td>
<td>RXD</td>
</tr>
<tr>
<td>4</td>
<td>RTS</td>
<td>Ready to send *2</td>
<td>←</td>
<td>RTS</td>
</tr>
<tr>
<td>5</td>
<td>CTS</td>
<td>Clear to send *2</td>
<td>→</td>
<td>CTS</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>Data set ready</td>
<td>→</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>SG</td>
<td>Signal ground</td>
<td>-</td>
<td>SG</td>
</tr>
<tr>
<td>16, 18, 19, 21, 23</td>
<td>Internal use</td>
<td></td>
<td>Do not connect</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>Not used</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1: Signal names of the viscometer side are the same as the DTE side with TXD and RXD reversed.

*2: RTS and CTS flow control are not used. CTS output is HI always.

*3: Normal DOS/V cables do not use these terminals.
11. COMMAND LIST

The viscometer can be controlled by the following commands from the computer. Add a terminator \[\text{ch} \ (0Dh, 0Ah)\] to each command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Outputs the current data.</td>
</tr>
<tr>
<td>SIR</td>
<td>Outputs data continuously</td>
</tr>
<tr>
<td>C</td>
<td>Stops data output by SIR command.</td>
</tr>
<tr>
<td>QM</td>
<td>Outputs the data during measurement. (Effective only during measurement.)</td>
</tr>
<tr>
<td>START</td>
<td>Same as the [\text{START}] key</td>
</tr>
<tr>
<td>STOP</td>
<td>Same as the [\text{STOP}] key</td>
</tr>
<tr>
<td>HOLD</td>
<td>Same as the [\text{HOLD}] key</td>
</tr>
<tr>
<td>MODE</td>
<td>Same as the [\text{MODE}] key</td>
</tr>
<tr>
<td>PRINT</td>
<td>Same as the [\text{PRINT}] key</td>
</tr>
</tbody>
</table>
12. TROUBLESHOOTING

The viscometer is a precision instrument. When the measuring environment or the measurement method is inadequate, correct values cannot be obtained. If measurement values do not become stable or they seem to be incorrect, check as described below. If improper performance persists after checking, contact the local A&D dealer for repair.

When measurement values do not become stable:

- Is the ambient environment free from vibration and drafts?
 - Places such as second or higher floor or near busy highways or rail lines are prone to vibration.
 - Avoid these places or use an anti-vibration table, AD-1685.
 - Reconsider the setting of "Condition (Cond)" of the function setting.
 - Set it to "Cond 2".
 - Avoid direct drafts in the vicinity of the viscometer.

- Is there a strong electrical or magnetic noise source such as a motor near the viscometer?
 - Install the viscometer away from the electrical or magnetic noise sources.

- Is the protector or the sensor protective cover in contact with the sensor plates or the temperature sensor?
 - Attach the protector and the sensor protective cover properly so that they do not touch the sensor plates or the temperature sensor.
 - Remove the protector, the surface locator plate or the sensor protective cover when necessary.

How to remove the protector

Press the left and right side frames lightly in the direction indicated as 1 to remove the rotational axis. Pull the protector in the direction indicated as 2 to remove.
How to remove and attach the surface locator plate

Removing
Loosen the screw and remove the surface locator plate from the temperature sensor.

Attaching
Install the surface locator plate as shown in the illustration. Slip the locator plate onto the temperature sensor.
Move the plate to the top of the sensor.
Adjust the position of the locator plate so that the tip of the locator plate aligns to the center of the narrow part of the sensor plates.
Tighten the screw.

Note
When the sensor plate and the surface locator plate are too close, a measurement error may occur due to the liquid surface tension. Therefore, secure a clearance of at least 1 mm between the sensor plate and the surface locator plate. Maintain the clearance by rotating the surface locator plate when necessary.

How to remove the sensor protective cover

Remove the protector and the surface locator plate.
Pull the sensor protective cover in the direction indicated as 1 to release the portions A (two) and B from the protector frame.
Pull the sensor protective cover in the direction indicated as 2 to remove.

Note
When removing the sensor protective cover, it may touch the sensor plates and the temperature sensor. Use much care not to damage them.
When measurement values are not correct:

✓ Has the sample surface been adjusted to the center of the narrow part of the sensor plates?
 ● Adjust the table height by turning the knob so that the center of the narrow part of the sensor plates is on the sample surface.

✓ Are the positions of the left and right sensor plates in the sample surface the same?
 ● If not the same, level the viscometer using the leveling feet so that the liquid surface will be leveled.

✓ Are the sensor plates clean?
 ● Remove any residual sample material from the sensor plates using alcohol.
 ● When any residual sample material is on the portion of the sensor plates above the sample surface, changes in the mass cause the vibration frequency to shift, which will result in a measurement error.

✓ Are the sensor plates bent?
 ● If bent, contact the local A&D dealer for repair.

✓ Does the sample generate bubbles because of the differences in the sample temperature and the ambient temperature and do the bubbles accumulate on the sensor plates?

✓ The sample viscosity depends on the temperature.
 ● Generally, the viscosity of a liquid is temperature dependent and changes by negative 2 to negative 10 percent, per degree Celsius.

✓ Is the sample surface lowered?
 ● In a measurement that takes a long time, evaporation may cause the sample surface to be lowered. Maintain the sample surface level.

✓ Do the main unit and the display unit have the same serial number?
 ● The main unit and the display unit have been adjusted in pairs. Confirm that the main unit and the display unit have the same serial number.

✓ Is the viscometer in the data hold mode?
 ● To release the data hold mode, press the HOLD key.
 ● The processing indicator blinks while a measurement is performed.

✓ Is calibration performed?
 ● When the absolute viscosity value is important, it is recommend that a periodic calibration be performed using a standard viscosity fluid.
When more precise measurement is required:

- When the viscometer is installed for the first time or is moved to another location, plug in the AC adapter and warm up the viscometer for one hour or more, to acclimatize the viscometer to the measuring environment. And before measurement, calibrate the viscometer using the sample cup that will be used for measurement.

- Placing the sensor plates and the temperature sensor in the sample may change the sample temperature. For precise measurement, leave the sample as is for a while, after placing the sensor plates and the temperature sensor, to ensure no changes to the sample temperature. And then, start a measurement.

- When the sensor plates and the temperature sensor are cleaned using alcohol, the plates and the sensor are cooled temporarily and their temperature is lowered. Allow the plates and the sensor to acclimatize to the measuring environment before measurement.

When the temperature values are not correct:

- Is the display unit connected to the main unit properly using the connection cable?
 - Refer to "2-2 Installing the Viscometer" on page 7 to make a connection between the display unit and the main unit.

When water viscosity is to be measured:

- When tap water is poured into the sample cup directly and is measured, bubbles are generated on the sensor plates due to the difference in pressure and temperature and the viscosity may increase gradually. Pressurized tap water generates bubbles easily. Therefore, use distilled or purified water that is not pressurized.

- In a measurement that takes a long time, the sample viscosity may increase due to water contamination. Perform a periodic check on water quality.
13. ERROR DISPLAY

<table>
<thead>
<tr>
<th>Error display</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![H](image) | Above measuring range error
The viscosity value exceeds the upper limit of the viscosity measuring range (SV-10: 11.99 Pa⋅s, SV-100: 119.9 Pa⋅s).
The viscosity of the sample can not be measured.
This error may occur when the display unit is not connected to the main unit. |
| ![L](image) | Below measuring range error
The viscosity value is below the lower limit of the viscosity measuring range (SV-10: 0.30 mPa⋅s, SV-100: 0.90 Pa⋅s)
The viscosity of the sample can not be measured.
This error may occur when the display unit is not connected to the main unit. |
| ![EL PF](image) | The power supply for the internal clock is depleted.
Press any key to enter the clock correction mode. Setting the clock enables the viscometer to be used temporarily.
If the error occurs frequently, contact the local A&D dealer for repair. |
| ![Err 3](image) | Internal IC error
Turn the power off. Then, turn the power on again. If this does not release the error, contact the local A&D dealer for repair. |
14. SPECIFICATIONS

<table>
<thead>
<tr>
<th>Measurement method</th>
<th>SV-10</th>
<th>SV-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity measuring range</td>
<td>0.3 to 10000 mPa-s (1000 to 100000 mPa-s)</td>
<td>1 to 100 Pas (1000 to 100000 mPa-s)</td>
</tr>
<tr>
<td>Measurement accuracy *1</td>
<td>±3% (1 to 1000 mPa-s)</td>
<td>±5% (1 to 10 Pas) (1000 to 100000 mPa-s)</td>
</tr>
<tr>
<td></td>
<td>±5% (1 to 10 Pas) (1000 to 100000 mPa-s)</td>
<td></td>
</tr>
<tr>
<td>Viscosity measuring range</td>
<td>0.3 to 10000 mPa-s (1000 to 100000 mPa-s)</td>
<td></td>
</tr>
<tr>
<td>Repeatability *2</td>
<td>1% (Standard deviation)</td>
<td></td>
</tr>
<tr>
<td>Accuracy *3</td>
<td>±3% (1 to 1000 mPa-s)</td>
<td>±5% (1 to 10 Pas) (1000 to 100000 mPa-s)</td>
</tr>
<tr>
<td>Minimum display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range (mPa-s)</td>
<td>Minimum display (mPa-s)</td>
<td>Minimum display (Pas)</td>
</tr>
<tr>
<td>0.3-10</td>
<td>0.01</td>
<td>0.0001</td>
</tr>
<tr>
<td>10-100</td>
<td>0</td>
<td>0.0001</td>
</tr>
<tr>
<td>100-1000</td>
<td>1</td>
<td>0.001</td>
</tr>
<tr>
<td>1000-10000</td>
<td>10 *4</td>
<td>0.01</td>
</tr>
<tr>
<td>Unit (Viscosity)</td>
<td>mPa-s, Pas, cP, P</td>
<td>Pas, P</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>10 to 40°C (50 to 104°F)</td>
<td></td>
</tr>
<tr>
<td>Minimum sample amount</td>
<td>35 mL</td>
<td></td>
</tr>
<tr>
<td>Temperature display</td>
<td>0 to 160°C/0.1°C, (32 to 320°F/0.1°F) *5</td>
<td></td>
</tr>
<tr>
<td>Temperature measurement accuracy</td>
<td>0 to 20°C/32 to 68°F: ±1°C/±1.8°F</td>
<td>20 to 30°C/68 to 86°F: ±0.5°C/±0.9°F</td>
</tr>
<tr>
<td></td>
<td>30 to 100°C/86 to 212°F: ±2°C/±3.6°F</td>
<td>100 to 160°C/212 to 320°F: ±4°C/±7.2°F</td>
</tr>
<tr>
<td>Display</td>
<td>Vacuum fluorescent display (VFD)</td>
<td></td>
</tr>
<tr>
<td>Connection cable length</td>
<td>1.5 m (between the main unit and the display unit)</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>RS-232C standard</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>AC adapter (Confirm that the adapter type is correct for the local voltage and power receptacle type.)</td>
<td>Appro. 14 VA (Including the AC adapter)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Approx. 14 VA (Including the AC adapter)</td>
<td></td>
</tr>
<tr>
<td>External dimensions/mass</td>
<td>Main unit: 332 (W) x 314 (D) x 536 (H) mm/Approx. 5.0 kg</td>
<td>Display unit: 238(W) x 132 (D) x 170 (H) mm/Approx. 1.3 kg</td>
</tr>
<tr>
<td>Standard accessories</td>
<td>AC adapter (1 pc)</td>
<td>Windows communication tools for viscosity (WinCT-Viscosity) CD (1 pc.)</td>
</tr>
<tr>
<td></td>
<td>Sample cups (4 pcs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS-232C cable (25P-9P, 1 pc)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connection cable (1.5 m, 1pc)</td>
<td></td>
</tr>
</tbody>
</table>

*1 to *5: See the next page for the detailed description.
*1 When a sample cup of 45 mL is used.

*2 Repetitive measurement with the sensor plates remaining in the sample.

*3 The value after calibration using a standard viscosity fluid at a temperature range between 20°C and 30°C with no condensation. In a measurement that takes a long time, perform calibration using a standard viscosity fluid or purified water periodically, as necessary.

*4 The unit switches to Pa s.

*5 The operating temperature of each standard and optional accessory is as follows:

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Model</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample cup (Standard and optional)</td>
<td>AX-SV-33</td>
<td>0 to 120°C</td>
</tr>
<tr>
<td>Small sample cup (Optional)</td>
<td>AX-SV-34</td>
<td>0 to 120°C</td>
</tr>
<tr>
<td>Glass sample cup (Optional)</td>
<td>AX-SV-35</td>
<td>0 to 230°C</td>
</tr>
<tr>
<td>Water jacket assembly (Optional)</td>
<td>AX-SV-37</td>
<td>0 to 100°C</td>
</tr>
<tr>
<td>Glass storage container (Optional)</td>
<td>AX-SV-38</td>
<td>0 to 180°C (Lid: 80°C max.)</td>
</tr>
</tbody>
</table>

Take the operating temperature shown above into considerations when using the above items.
15. OPTIONAL ACCESSORIES

List of Optional Accessories (sold separately)

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard viscosity fluid (JS2.5)</td>
<td>AX-SV-31-2.5</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS5)</td>
<td>AX-SV-31-5</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS10)</td>
<td>AX-SV-31-10</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS20)</td>
<td>AX-SV-31-20</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS50)</td>
<td>AX-SV-31-50</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS100)</td>
<td>AX-SV-31-100</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS200)</td>
<td>AX-SV-31-200</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS500)</td>
<td>AX-SV-31-500</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS1000)</td>
<td>AX-SV-31-1000</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS14000)</td>
<td>AX-SV-31-14000</td>
</tr>
<tr>
<td>Standard viscosity fluid (JS160000)</td>
<td>AX-SV-31-160000</td>
</tr>
<tr>
<td>Sample cup (Capacity: 35 to 45 mL)</td>
<td>10 pieces/set AX-SV-33</td>
</tr>
<tr>
<td>Small sample cup (Capacity: 10 mL)</td>
<td>10 pieces/set AX-SV-34</td>
</tr>
<tr>
<td>Glass sample cup (Capacity: Approx. 13 mL)</td>
<td>AX-SV-35</td>
</tr>
<tr>
<td>Positioning stopper</td>
<td>AX-SV-36</td>
</tr>
<tr>
<td>Water jacket assembly</td>
<td>AX-SV-37</td>
</tr>
<tr>
<td>Glass storage container (Capacity: Approx. 50 mL)</td>
<td>10 pieces/set AX-SV-38</td>
</tr>
<tr>
<td>Analog output</td>
<td>AX-SV-42</td>
</tr>
<tr>
<td>Extension cable (5 m)</td>
<td>AX-SV-43</td>
</tr>
<tr>
<td>Compact printer</td>
<td>AD-8121B</td>
</tr>
</tbody>
</table>

*1 Only available for the SV-10

*2 When calibrated with the SV-100, use it at 25°C or below.

*3 Only available for the SV-100

AX-SV-33 Sample Cup

The AX-SV-33 consists of:

- Sample cup (Capacity: 35 to 45 mL) 10 pcs
 (Polycarbonate, Operating temperature: 120°C max.)

AX-SV-34 Small Sample Cup (10mL)

- Used when a small amount of sample will be measured.

The AX-SV-34 consists of:

- Small sample cup (10 mL) 10 pcs
- Small sample cup cover 10 pcs
- Sample cup 1 pc
 (All: Polycarbonate, Operating temperature: 120°C max.)
AX-SV-35 Glass Sample Cup (Approx. 13 mL)
- Used when organic solvents will be measured.
- The AX-SV-37 consists of:
 - Glass sample cup (Capacity: Approx. 13mL) 1 pc
 (Pyrex® glass, Operating temperature: 230°C max.)
 - Glass sample cup holder (Stainless steel) 1 pc
 - Sample cup 1 pc
 (Polycarbonate, Operating temperature: 120°C max.)

AX-SV-36 Positioning Stopper
- Used to fix the position of the sensor unit and the sensor plates so that positioning the sensor plates and the sample surface is not required each time a measurement is performed in a repetitive test. See below for how to attach the positioning stopper.

How to attach the positioning stopper:
1. Raise the lever so that the sensor unit can be moved.
2. While pinching the grips, lift out the sensor unit from above.
3. While pinching the grips on the positioning stopper, attach the stopper, with the lever on the left side as seen from front, on the supporting post. Be sure to place the guide located on the inner wall of the stopper in the guide channels located on the supporting post.
4. Position the stopper at an appropriate height. Raise the lever to secure the stopper.
5. While pinching the grips, attach the sensor unit on the supporting post.
6. Lower the sensor unit until it comes into contact with the stopper.
7. Lower the lever to secure the sensor unit.
AX-SV-37 Water Jacket Assembly

- Used, in combination with a commercially available constant temperature bath for heating medium circulation, to maintain the sample temperature constant or to measure the viscosity while changing the sample temperature.
- The glass sample cup sold separately can also be used.
- The AX-SV-37 consists of:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water jacket</td>
<td>1 pc</td>
<td>(Main body: Polycarbonate, Packing: Silicone rubber, Washer: Nylon)</td>
</tr>
<tr>
<td>Small sample cup</td>
<td>4 pcs</td>
<td>(Polycarbonate, Operating temperature: 120°C max.)</td>
</tr>
<tr>
<td>Small sample cup cover</td>
<td>4 pcs</td>
<td>(Polycarbonate, Operating temperature: 120°C max.)</td>
</tr>
<tr>
<td>Screw</td>
<td>1 pc</td>
<td>(Screw: Polyacetal, Washer: Nylon)</td>
</tr>
</tbody>
</table>

- Specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation nozzle</td>
<td>Outside diameter 10.5 mm</td>
</tr>
<tr>
<td>Recommended hose</td>
<td>Silicone tube, inside diameter 8 mm</td>
</tr>
</tbody>
</table>

- It is recommended that, for safety, a commercially available tubing clamp (clamping size: 11 to 20 mm) be used to fasten the tube securely to the nozzle.
- When using the water jacket, make sure that no inner pressure is exerted in the water jacket due to the kinked or blocked tubes, as that could exert the pressure in the water jacket, causing it to break.
- When a stirrer is attached at the bottom of the water jacket, the sample viscosity can be measured while the sample is being stirred. The maximum viscosity value which can be measured is 1000 mPa·s. (Only for SV-10)

 Stirrer: VARIOMAG MICRO manufactured by H+P Labortechnik AG

 Use a rotator with a size of 6 mm (length) x 4 mm (diameter).
AX-SV-38 Glass Storage Container

- Used to store sample fluids.
- The viscosity of the sample stored in the container can be measured as it is.
- The AX-SV-38 consists of:
 - Glass storage container: 10 pcs
 - Capacity: Approx. 50mL
 - Material: Polypropylene
 - Operating temperature: 180°C max.
 - Lid: 10 pcs
 - Material: Polyethylene
 - Operating temperature: 80°C max.

AX-SV-39 Plastic Storage Container

- Used to store sample fluids.
- The viscosity of the sample stored in the container can be measured as it is.
- The AX-SV-39 consists of:
 - Plastic storage container: 20 pcs
 - Capacity: 120mL max.
 - Material: Polypropylene
 - Operating temperature: 120°C max.
 - Lid: 20 pcs
 - Material: Polypropylene
 - Operating temperature: 120°C max.
 - Inner lid: 20 pcs
 - Material: Low density polyethylene
 - Operating temperature: 80°C max.

AD-1685 Anti-vibration table

- Used when the viscosity value is unstable due to external vibration, especially for measuring low viscosity.
16. EXTERNAL DIMENSIONS

Whole View

![Whole View Diagram]

*A = Sensor plates lowest position 3.5 mm (With protector used, no table)
*B = Sensor plates highest position 268 mm
*C = Table height 54 to 140 mm

Unit: mm

Detailed View of the Sensor Unit

![Detailed View Diagram]

SV-10

* = Distance from the sensor protective cover

SV-100

Unit: mm