HV-WP series
HW-WP series

INSTRUCTION MANUAL

Waterproof Digital Platform Scale

HV-15KV-WP
HV-60KV-WP
HV-200KV-WP

HW-10KV-WP
HW-60KV-WP
HW-100KV-WP
HW-200KV-WP

A&D Company, Limited
This is a hazard alert mark.

This mark informs you about the operation of the product.

Note This manual is subject to change without notice at any time to improve the product. No part of this manual may be photocopied, reproduced, or translated into another language without the prior written consent of the A&D Company.

Product specifications are subject to change without any obligation on the part of the manufacture.

Copyright© 2000 A&D Company, Limited
Contents

1. Compliance .. 3
 1.1.1. Compliance with FCC rules... 3
 1.1.2. Classification of protection provided by enclosures 3

2. Outline and Features.. 4

3. Unpacking .. 5
 3.1. Accessories and Options list ... 6

4. Caution... 7
 4.1. Precautions for Installing the Scale ... 7
 4.2. Precautions for Operating the Scale.. 7
 4.3. Precautions for Storing the Scale.. 7

5. Installing the Scale ... 8
 5.1. Removing the pole .. 9
 5.2. Grounding the scale .. 11

6. Names.. 12
 6.1. Display and Symbols... 13
 6.2. Switches.. 15

7. Basic Operation.. 17
 7.1. Turing the Scale on/off and Weighing ... 17
 7.2. Tare (And Net Display).. 18
 7.2.1. The Way of Tare Input by Weighing.. 18
 7.2.2. The Way of Digital Input (Preset Tare)................................. 18
 7.3. Weighing Range for the HV-WP series 19
 7.4. Mode Switch (Changing Unit and Mode).................................... 20

8. Counting Mode... 22
 8.1. Storing a Unit Mass ... 22
 8.2. Counting the number of articles .. 23

9. Percentage Mode... 24
 9.1. Storing a 100% Mass ... 24
 9.2. Reading percentage .. 25

10. Accumulation Function... 26
 10.1. Preparation (Setting Parameters).. 27
 10.2. Operation and Performance (Examples)..................................... 28

11. Upper/Lower Comparator Function 29
 11.1. Preparation (Setting Parameters).. 30
 11.2. Operation and Performance (Examples)..................................... 32

12. Full/Dribble Batch Function ... 33
1. Compliance

1.1.1. Compliance with FCC rules

- Please note that this equipment generates, uses and can radiate radio frequency energy. This equipment has been tested and has been found to comply with the limits of a Class A computing device pursuant to Subpart J of Part 15 of FCC rules. These rules are designed to provide reasonable protection against interference when this equipment is operated in a commercial environment. If this unit is operated in a residential area it may cause some interference and under these circumstances the user would be required to take, at his own expense, whatever measures are necessary to eliminate the interference.
 (FCC = Federal Communications Commission in the U.S.A.)

1.1.2. Classification of protection provided by enclosures

- This equipment is designed to comply with the IP Code of IEC 529. The "IP-65" code is explained as follows:
 "IP" International Protection.
 "6" Against ingress of solid foreign objects.
 Dust-tight. No ingress of dust.
 "5" Against ingress of water with harmful effects.
 Protected against water jets (no powerful jets). Water projected in jets
 against the enclosure from any direction shall have no harmful effects.
2. Outline and Features

- These scales are designed to comply with IP-65 of IEC 529

- The HV-WP series is a platform scale with 1/3000 resolution, and has a "triple weighing range" function to select the weighing range.

- The HW-WP series is a platform scale with 1/10000 resolution.

- The scales have a fluorescent display so the weighing value can be read in dim light. This type uses the AC power line as a power source.

- Using the standard RS-232C serial interface, data can be output to a printer, and the scale can be controlled or can be set by a command from a personal computer.

- The counting mode function converts the total mass value (total weight) of articles to be counted, to a count, when each of these articles assume the same mass value.

- The scales can display the unit of percentage.

- The accumulation function accumulates each weighing value and counts the number of weighings using six figures.

- The comparator function compares the display value with the upper limit value (HI), lower limit value (LO) and displays the result. The result can be output by a buzzer if option OP-03 is installed.

- The simple batch function or full/dribble batch function can be used for filling up to a target mass value. The status of a weighing value can be output if option OP-03 or OP-04 is installed. The outputs are zero band, preliminary and final.

- Using the optional RS-422/RS-485 serial interface and a computer, up to 16 scales can be controled, if this option (OP-04) is installed in place of the RS-232C serial interface.

- The following parameters are stored in the product with no power supplied.

<table>
<thead>
<tr>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit mass of the counting mode</td>
</tr>
<tr>
<td>100% mass of the percentage mode</td>
</tr>
<tr>
<td>Total count and total mass of the accumulation function</td>
</tr>
<tr>
<td>Upper limit value and lower limit value of the upper / lower comparator function, Final value, preliminary value and zero band of the full / dribble batch function or Final value, preliminary value and zero band of the simple batch function</td>
</tr>
<tr>
<td>Calibration data</td>
</tr>
<tr>
<td>Parameters of the function table (F1 ~ F17)</td>
</tr>
</tbody>
</table>
3. Unpacking

Models
HV-15KV-WP
HW-10KV-WP

Display Unit

Pan
Base Unit

Caution
Do not pull the load-cell cable.

Main power cord

Models
HV-60KV-WP
HW-60KV-WP

Display Unit

Pan
Base Unit

Caution
Do not pull the load-cell cable.

Main power cord

Models
HV-200KV-WP
HW-100KV-WP
HW-200KV-WP

Display Unit

Pan
Base Unit

Caution
Do not pull the load-cell cable.

Main power cord

Main power
Please confirm that the local voltage and receptacle type are correct for your scale.

All Accessories
Refer to the accessories list on the next page. The combination of accessories is according to the scale model.

- 3mm allen wrench
- Instruction manual
3.1. Accessories and Options List

Accessories for the HV–WP series and HW–WP series

<table>
<thead>
<tr>
<th>Models</th>
<th>Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV-15KV-WP</td>
<td>Instruction manual</td>
</tr>
<tr>
<td>HW-10KV-WP</td>
<td></td>
</tr>
<tr>
<td>HV-60KV-WP</td>
<td></td>
</tr>
<tr>
<td>HV-200KV-WP</td>
<td></td>
</tr>
<tr>
<td>HW-60KV-WP</td>
<td>3mm Allen wrench</td>
</tr>
<tr>
<td>HW-100KV-WP</td>
<td>Instruction manual</td>
</tr>
<tr>
<td>HW-200KV-WP</td>
<td></td>
</tr>
</tbody>
</table>

Options List

<table>
<thead>
<tr>
<th>Cable or option name</th>
<th>Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP-02 5m extension loadcell cable</td>
<td>Tapping screw M4x10</td>
</tr>
<tr>
<td>OP-03 RS-232C interface/ Relay output/ Buzzer</td>
<td>Connector JA:TCP0586</td>
</tr>
<tr>
<td>OP-04 RS-422/485 interface / Relay output</td>
<td>Connector TM:BLA9</td>
</tr>
<tr>
<td>OP-13 Roller conveyor for HV-200KV-WP, HW-100KV-WP and HW-200KV-WP</td>
<td></td>
</tr>
<tr>
<td>OP-14 Roller conveyor for HV-60KV-WP and HW-60KV-WP</td>
<td></td>
</tr>
<tr>
<td>AX-KO577A-200 RS-232C cable, D-sub 25 pin, 2m</td>
<td></td>
</tr>
<tr>
<td>AX-KO1786-200 RS-232C cable, D-sub 9 pin, 2m</td>
<td></td>
</tr>
</tbody>
</table>

AX-KO577A-200

```
D-sub 25 pin  | Din 7 pin
2            | 2
3            | 3
4            | 5
5            | 5
6            | 7
7
```

AX-KO1786-200

```
D-sub 9 pin  | Din 7 pin
2            | 2
3            | 3
5            | 5
6            | 7
7            | 8
```
4. Caution

4.1. Precautions for Installing the Scale

- Ground the scale, so that the user will not be subjected to an electric shock.
- Do not handle the Main power cord with wet hands.
- The AC plug is not water-resistant. Install it in an area where it does not get wet.
- Do not install the scale where there is flammable or corrosive gas present.
 - Do not install the scale under water.
 - Do not pull, fold or arrange cables forcibly.

Consider the following conditions to get the most from your scale.
- The best operation is where the temperature and relative humidity is stable, the place to install the scale is a solid and level floor, there is no draft and the power source is stable.
- Do not install the scale in direct sunlight.
- Do not install the scale near heaters or air conditioners.
- Do not install the scale near equipment which produces magnetic fields.
- Do not install the scale in a place where it is apt to be charged with static electricity, or where the relative humidity is lower than 45%RH. Plastic and isolators are apt to be charged with static electricity.
- Do not use an unstable power source.

4.2. Precautions for Operating the Scale

- Periodically ensure that the weighing value is correct.
- Calibrate the scale before using and after moving it to another location.
- Do not place anything on the weighing pan which is heavier than the weighing capacity.
- Do not drop anything upon the weighing pan.
- Do not use a sharp instrument such as a pencil or ball-point pen to press the switches. Press the switches gently using only your finger.
- We recommend pressing the [ZERO] switch before each weighing to prevent possible error.
- Close the calibration switch cover and the display rear cover to keep waterproof.

4.3. Precautions for Storing the Scale

- Do not disassemble the scale.
- Do not use solvents to clean the scale.
- For best cleaning of the display unit, wipe with a dry lint free cloth or a lint free cloth which is moistened with warm water and a mild detergent.
- Do not scratch the base unit with a brash.
- Do not use a powerful water jet.
5. Installing the Scale

This procedure includes all of the steps for installing the HV-WP series and HW-WP series. Therefore, on some models, there are some unnecessary steps.

Step 1 Connect the indicator unit to the pole with the accessory knobs and rubber washers.

Step 2 Take the base unit and pole out, taking care that the load-cell cable is not pulled.

Step 3 Put the weighing pan on the base unit.

Step 4 Attach the pole to the bracket of the base unit so as not to damage the load cell cable. Insert the remainder of the load cell cable into the pole. Affix the pole to the bracket using two 3mm Allen screws.

Step 5 Select the place for installing the scale. Also consider "4. Caution" on page 7.

Step 6 Adjust the level of the base unit by using the "Bubble spirit level" and "Leveling feet".

Step 7 Ground the scale using the earth terminal.

Caution

⚠️ Please confirm that the local voltage and the receptacle type are correct for your scale.

Step 8 Adjust the angle of the indicator unit using the knobs on the side of indicator unit.

Step 9 Check the weighing accuracy. If the scale needs calibration, refer to "14. Calibration". on page 40.
5.1. Removing the Pole

Caution
- Remove the main power plug from the receptacle before removing the pole.
- When removing the loadcell cable, do not pull the loadcell cable connector forcibly and do not pull on the wires of the cable.
- Do not bend the cable forcibly. Use care so that the load cell cable does not touch the pan inside the base unit.
- Avoid dust, static electricity and high humidity (or drops) because the inside of the display unit is very sensitive.

Procedure
Step 1 Remove the power plug from the receptacle.

Step 2 Open the rear cover of the display unit.
Disconnect the loadcell cable connector gently.

Step 3 Remove the ferrite core and cable clamp from the loadcell cable.

Step 4 Loosen the knobs to remove the display unit.

Step 5 Remove four 3mm screws from the bottom cover of the bracket for HV-60KV-WP, HV-200KV-WP, HW-60KV-WP, HW-100KV-WP, HW-200KV-WP.

Step 6 Carefully remove the load cell cable from the pole and the bracket. Especially, use care with the HV-15KV-WP, HW-10KV-WP so that the connector is not pulled forcibly.

Step 7 Arrange the cable so that it does not touch to the weighing pan in the base unit. The untied cable is at least 2m long. The optional extension loadcell cable (OP-02) is 5m long.
Step 8 Removing the bracket from the base unit, requires the following allen wrench.

| HV-15KV-WP, HV-60KV-WP, HW-10KV-WP, HW-60KV-WP | HV-200KV-WP, HW-100KV-WP, HW-200KV-WP |
| 5mm Allen wrench | 6mm Allen wrench |

Step 9 Wind the cable through the ferrite core two times. Affix the cable to the rear cover using the cable clamp.

Step 10 Connect the cable to the connector. Close the rear cover.

Step 11 Confirm the accuracy of the scale.
* An example of a scale installation after the pole has been removed and includes the optional Indicator holder

Option…AX:043005266 (Indicator holder)
5.2. Grounding the Scale

When using where there may be static electricity, ground the scale. The grounding procedure depends on the scale model. Refer to the table below. These procedures are only for grounding part of the scale.

<table>
<thead>
<tr>
<th>Models</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV-15KV-WP, HW-10KV-WP</td>
<td>Procedure A</td>
</tr>
<tr>
<td>HV-60KV-WP, HV-200KV-WP</td>
<td>Procedure B</td>
</tr>
<tr>
<td>HW-60KV-WP, HW-100KV-WP, HW-200KV-WP</td>
<td></td>
</tr>
</tbody>
</table>

Procedure A
(HV-15KV-WP, HW-10KV-WP)

Secure the grounding cable using a M4 screw in the screw hole between the two hexagon bolts on the base unit bottom side. (Part of “”)

Procedure B
(HV-60KV-WP, HV-200KV-WP, HW-60KV-WP, HW-100KV-WP, HW-200KV-WP)

Secure the grounding cable using the screw that secures the under cover. (Part of “”)

HV–WP/HW–WP Series
Page 11
5. 2. Grounding the Balance
6. Names

Models
HV-15KV-WP
HW-10KV-WP

Models
HV-60KV-WP
HV-200KV-WP
HW-60KV-WP
HW-100KV-WP
HW-200KV-WP

Display

- Weighing condition
- Weighing data
- Units
- Indicator of function
- Keys

Rear of Indicator Unit

- Knob for angle adjustment
- CAL switch is in a depth of 5cm.
 Calibrating the scale to weigh correctly.
 Use the proper OIML class calibration mass.

- Inside of rear panel
 - Earth terminal
 - RS-232C DIN connector
 - Cable clamp for load cell cable
 - Load cell cable
 - Cable clamp for option
 - Earth terminal
 - Power line terminal

Please Confirm that the local voltage and receptacle type are correct for your scale.
6.1. Display and Symbols

<table>
<thead>
<tr>
<th>Display and Symbols</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STABLE [STABLE]</td>
<td>Stability mark. When the current weighing value is stable, this mark is displayed, indicating a condition where the value is readable.</td>
</tr>
<tr>
<td>NET ZERO [ZERO]</td>
<td>Zero point mark. With nothing on the weighing pan and pressing the [ZERO] switch, this mark is displayed. The zero point is a fundamental starting point to weigh anything.</td>
</tr>
<tr>
<td>NET ZERO [ZERO]</td>
<td>Net mark. Pressing the [TARE] switch, this mark is displayed with net display. Used to indicate that the mass of the container placed on the pan has been subtracted from the gross value.</td>
</tr>
<tr>
<td>READY [READY]</td>
<td>Preset tare mark. Storing a tare with digital input, this mark blinks.</td>
</tr>
<tr>
<td>M+ [M+]</td>
<td>Accumulation mark. Using the accumulation function, this mark is displayed.</td>
</tr>
<tr>
<td>HI OK LO [HI OK LO]</td>
<td>Ready mark for the full/dribble batch function. The meaning of the mark is as follows: ON The weighing value is within the zero-band. OFF The full/dribble batch process is above the zero-band. Blinking The start or end of the full/dribble batch process in not within the zero-band.</td>
</tr>
<tr>
<td>HI OK LO [HI OK LO]</td>
<td>The comparator indicator. □ Using the comparator function and comparing a weighing value with the upper and lower limits, the result is indicated. □ Using the full/dribble batch function, the full flow gate indicator is OK, the dribble flow gate indicator is HI and the zero band indicator is LO.</td>
</tr>
</tbody>
</table>

Example. Display of zero (zero point). With nothing on the weighing pan and pressing the [ZERO] switch, this mark is displayed. The zero point mark is displayed. The stability mark is displayed.

Example. Display of the counting mode. This mode uses the registered unit mass, and counts the amount of articles on the weighing pan. The unit is **PCS**.
Display and Symbols

<table>
<thead>
<tr>
<th>Display</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example. Storing the unit mass of the counting mode. The unit mass is stored, using 20 pieces of samples. The zero value means that no articles are on the pan.</td>
<td></td>
</tr>
<tr>
<td>Example. Storing the unit mass of the counting mode. The unit mass is stored, using 10 pieces of samples. The sign "-" means "weighing value is not zero".</td>
<td></td>
</tr>
<tr>
<td>Example. Percentage mode. This mode uses the registered 100% mass, and converts the weighing value to a percentage. The unit is %.</td>
<td></td>
</tr>
<tr>
<td>Example. Display of the function table. This function table sets parameters of items. ENTER switch Selecting an item. ∧ and < switches Selecting the parameter of an item. ENTER switch Storing new parameters.</td>
<td></td>
</tr>
<tr>
<td>Example. Preset tare. Entering tare with digital input. < switch Selecting a figure. ∧ switch Selecting a number. ENTER switch Storing a new tare.</td>
<td></td>
</tr>
<tr>
<td>Example. Hold display The hold display is set using F_i, of the function table. When the value is "nearly-zero" or changes more than 25% +30 digits, the hold is canceled.</td>
<td></td>
</tr>
<tr>
<td>Weighing error. Check the base unit and weighing pan.</td>
<td></td>
</tr>
<tr>
<td>Over load display. Remove the mass from the weighing pan.</td>
<td></td>
</tr>
<tr>
<td>Calibration error. The calibration mass is too light. Check the base unit and weighing pan.</td>
<td></td>
</tr>
<tr>
<td>Calibration error. The calibration mass is too heavy. Check the base unit and weighing pan.</td>
<td></td>
</tr>
</tbody>
</table>

The "digit" is a unit of display, and is equivalent to the minimum measurable mass. The "nearly-zero" is within ± 5 digits from zero point in the unit of kg.

6.1. Display and Symbols
6.2. Switches

<table>
<thead>
<tr>
<th>Display and Symbols</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed display</td>
<td>Does not display zero when the scale is turned on. Remove anything that is on the weighing pan. Perform zero point calibration. Or The weight value is unstable due to drift or vibration when the scale is turned on. A breeze or vibration may be affecting the measurement. Check around the weighing pan.</td>
</tr>
<tr>
<td>Blinking M+</td>
<td>Accumulated data count.</td>
</tr>
<tr>
<td>Blinking kg</td>
<td>Total mass value of the accumulated data.</td>
</tr>
<tr>
<td>Blinking HI</td>
<td>Comparator function, display is an upper limit. Full/dribble batch function, the display is a final value.</td>
</tr>
<tr>
<td>Blinking OK</td>
<td>Full/dribble batch function, the display is a preliminary value.</td>
</tr>
<tr>
<td>Blinking LO</td>
<td>Comparator function, display is a lower limit. Full/dribble batch function, the display is the zero band.</td>
</tr>
<tr>
<td>CAP. MAX. 3/6/15kg d=1/2/5g</td>
<td>Description of the weighing unit, weighing range and measurable minimum mass. Example: Displays the weight value by 5 g up to 15 kg. Displays the weight value by 2 g up to 6 kg. Displays the weight value by 1 g up to 3 kg.</td>
</tr>
</tbody>
</table>

6.2. Switches

<table>
<thead>
<tr>
<th>Display and Symbols</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/OFF</td>
<td>Display ON/ OFF switch. Note Standby status when power is connected.</td>
</tr>
<tr>
<td>ZERO</td>
<td>ZERO switch. When there is nothing on the weighing pan and the [ZERO] switch is pressed, the scale displays the mass value of zero and the zero point mark. Net is canceled, if it is displayed.</td>
</tr>
<tr>
<td>TARE</td>
<td>TARE switch. Canceling the mass of a receptacle, case, bag, etc. which is put on the weighing pan, and does not weigh its mass.</td>
</tr>
</tbody>
</table>
| **RANGE** or **SAMPLE** | RANGE switch, SAMPLE switch.
 - Changing weighing range for HV-WP series.(Refer to F_2)
 - Storing the unit mass, it is used to select a sample number.
 - In the function table, it is used to select a parameter. |
<table>
<thead>
<tr>
<th>Display and Symbols</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| SET switch. | Turns the comparator on/off. (Refer to F_6)
| | - Counting mode, it is used to enter the mode to store the unit mass.
| | - Percentage mode, it is used to enter the mode to store the 100% mass.
| | - The full/dribble batch function, it is used as a start switch.
| | - For the preset tare and selecting a calibration mass, it is used to select a figure. |
| MODE switch. | Changing the current unit.
| | While setting modes, this switch is used for "storing a parameter and proceeding to the next step". |
| F switch. | Full/dribble batch function, it is used to finish the process.
| | (Refer to F_{10})
| | - Hold switch. (Refer to F_{12})
| | - Comparator function, selects polarity (+,-). |
| PRINT switch. | Used to print or output data. (Refer to F_5)
| | - Used to enter the function table. |
| Press and hold SET | Used to enter the mode to set a preset tare.
| And press TARE | |
| Press and hold SET | |
| And press TARE | |
7. Basic Operation

7.1. Turning the Scale on/off and Weighing

Step 1 Ground the scale using the earth terminal.
Step 2 Place nothing on the weighing pan.
Step 3 Confirm that local voltage and receptacle type adapt to your scale.
Step 4 The scale turns on/off using the ON/OFF switch alternately.
Step 5 Check the accuracy of weighing. If you calibrate the scale, perform it after turning the scale on for 30 minutes (warming up).
Step 6 Press the ZERO switch to display zero. (with nothing on the weighing pan.)
Step 7 Place an item on the weighing pan gently.
Step 8 You can read the mass value after the stability mark is displayed.
Step 9 Remove the item from the weighing pan.
Step 10 Turn the scale using the ON/OFF switch off.

Memo
- With the power cord connected, the scale consumes only the power for standby status after turning off the scale. To shut down the power completely, disconnect the power cord.

⚠️ Please confirm that the local voltage and receptacle type are correct for your scale.
7.2. Tare (And Net Display)

"Tare" is used to cancel the mass of a container, receptacle, case, bag, etc. which is put on the weighing pan to contain the item to be weighed.

Caution
- Using a tare value reduces the weighing range.
- The current tare value is reset by pressing the [ZERO] switch or turning the scale off. (Reset value is zero.)
- The preset tare value must be within the minimum weighing range for the HV-WP series.

7.2.1. The Way of Tare Input by Weighing

Step 1 Put the container item on the weighing pan.

Step 2 Wait for the stability mark to be displayed. Press the [TARE] switch. The display becomes zero and the net mark is displayed.

Step 3 It is now possible to put something into the container. Wait for the stability mark to be displayed and to read its net display.

Step 4 Remove all things on the weighing pan.

7.2.2. The Way of Digital Input (Preset Tare)

Step 1 Press and hold the [SET] switch and press the [TARE] switch. Then the blank or stored tare value is displayed. A blank display means that the tare value is zero (reset value), and \(\text{\&} \) blinks.

Step 2 Set the preset tare value by using the following switches.
- \(\text{\&} \) switch: Selecting the number of the figure.
- \(<\) switch: Selecting a figure.

Step 3 Press the [ENTER] switch to store the new preset tare value. Then the scale displays a net value with the tare value subtracted from the gross weighing value.

Step 4 It is then possible to put something into the container. Wait for the stability mark to be displayed and to read its net.

Step 5 Remove all things from the weighing pan.
7.3. Weighing Range for the HV–WP Series

- This is the function to select a weighing range for the HV-WP series. The mass value is displayed within a selected range.
- Select automatic range \((F_2^2 0)\) or manual range \((F_2^2 1)\) in the function table.

Operation and Performance

<table>
<thead>
<tr>
<th>Function table</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_2^2 0)</td>
<td>Automatic range</td>
</tr>
<tr>
<td></td>
<td>□ The weighing range changes automatically, if the weighing value proceeds from narrow range to wide range when placing articles on the weighing pan.</td>
</tr>
<tr>
<td></td>
<td>□ When there is nothing on the weighing pan and the zero point mark is displayed, it changes to the minimum range automatically.</td>
</tr>
<tr>
<td></td>
<td>□ Press the [ZERO] switch to change to the minimum range, when there is nothing on the weighing pan and the zero point mark is not displayed due to net display or zero error.</td>
</tr>
</tbody>
</table>

\(F_2^2 1\)	Manual range
	□ Press the [RANGE] switch to expand the range.
	□ Press the [RANGE] switch to change to the minimum range, when there is nothing on the weighing pan and the zero point mark is displayed.
	□ Press the [ZERO] switch and the [RANGE] switch to change to the minimum range, when there is nothing on the weighing pan and the zero point mark is not displayed due to net display or zero error.

Weighing Range

<table>
<thead>
<tr>
<th>Models</th>
<th>Weighing Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV-15KV-WP</td>
<td>3kg, 6kg, 15kg</td>
</tr>
<tr>
<td>HV-60KV-WP</td>
<td>15kg, 30kg, 60kg</td>
</tr>
<tr>
<td>HV-200KV-WP</td>
<td>60kg, 150kg, 220kg</td>
</tr>
</tbody>
</table>
7.4. Mode Switch (Changing Unit and Mode)

Pressing the \textbf{MODE} switch, the display changes as follows. Refer to function table F_3 for units. Usable units are according to the factory settings.

If the law in your area permits, you may use all of the units. Also, some dealers may initially turn off units which are not regularly used.

- **Pound-Ounce**
- **Accumulation Count**
- **Accumulation Value**
- **M+**
- **M+ kg**
- **Active Simple Batch Function or Active Full/Dribble Batch Function ($F_6 8, F_6 9$)**
- **Active Comparator ($F_6 0 \sim F_6 7$)**
- **Final value**
- **Preliminary value**
- **Zero band**

Non metric units

Metric unit

No Accumulation Data
Explanation

- The status of "Inactive comparator (F6)" is that comparator function (F6 0, F6 2, F6 4, F6 6) is selected and the comparator is not used. The "active" or "Inactive" (ON/OFF) for the comparator can be selected by pressing the [SET] switch alternately.

- The following parameters are stored in the same memory. Therefore, the functions can not be used at the same time. If you use each function, it will be necessary to select the function from the function table, to set the parameters of HI, OK and LO, to weigh it using the function.

<table>
<thead>
<tr>
<th></th>
<th>Indicator and Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HI</td>
</tr>
<tr>
<td>Upper/Lower Comparator Function (F6 0 ~ 7)</td>
<td>Upper limit</td>
</tr>
<tr>
<td>Simple Batch Function (F6 8)</td>
<td>Final value</td>
</tr>
<tr>
<td>Full/ Dribble Batch Function (F6 9)</td>
<td>Final value</td>
</tr>
</tbody>
</table>
8. Counting Mode

- The counting mode is the function to convert the total mass value (total weight) of articles to a count, when each of these articles assume the same mass value.
- It is necessary to store a unit mass to count articles.
- Even if the AC adapter or the batteries is removed, the unit mass is maintained in non-volatile memory.

8.1. Storing a Unit Mass

Step 1 Press the MODE switch to display the unit pcs.

Step 2 Press the SET switch to enter the mode to store a unit mass.

Step 3 Press the switch to select the number of samples. The greater the quantity of samples, the greater the accuracy of the count.
- 5 pieces, 10 pieces, 20 pieces, 50 pieces, 100 pieces

Step 4 Put a container item on the weighing pan.
Press the TARE switch.

Step 5 Put in samples of number selected at step 3.
Press the ENTER switch to store it after the stability mark is displayed. Then the count is displayed.

Caution
- When the sample is too light and it is not possible to calculate a unit mass, the scale displays Lo uc and returns to step 3. Increase the number of samples. It is necessary to have more than 5 digits in the unit of kg to weigh a sample.
- When the unit mass is too light to store, the scale displays Lo uc. In this case, the unit mass will not be stored even if the number of samples is increased.
- Pressing the ENTER switch after Lo uc is displayed, the next unit is displayed.

Step 6 Remove all things from the weighing pan.

Note
The pan shape depends on the scale model.
HV–WP/HW–WP Series
8.2. Counting the Number of Articles

Step 1 Press the [MODE] switch to display the unit "pcs."

Step 2 Store the articles unit mass.
 Refer to "8.1 Storing a Unit Mass"

Step 3 Place the container item only on the weighing pan.
 Press the [TARE] switch.

Step 4 Put articles in the container item and read the count.

Step 5 Remove all things from the weighing pan.

Note: The pan shape depends on the scale model.
9. Percentage Mode

- The percent mode is the function to display a mass value in the unit of "%".
- Store a 100% mass value, in advance, to use this function.
- The 100% mass value is stored in the scale even if the power is removed.

9.1. Storing a 100% Mass

Step 1 Press the [MODE] switch to display the unit %.

Step 2 Press the [SET] switch to enter the mode that stores a 100% mass.

Step 3 With nothing on the weighing pan, press the [ZERO] switch to display zero.

Step 4 Place the 100% mass on the weighing pan gently. Press the [ENTER] switch, to store the 100% mass after the stability mark is displayed. Then the percentage is displayed.

Caution
- When the sample is too light and it is not possible to calculate a 100% mass, the scale displays \(\text{Lo} \) and returns to step 3.
- Pressing the [ENTER] switch after \(\text{Lo} \) is displayed, the next unit is displayed.

Step 5 Remove all things from the weighing pan.

Note
The pan shape depends on the scale model.
9.2. Reading Percentage

Step 1 Press the [MODE] switch to display the unit %.

Step 2 Store the 100% mass of the article.
 Refer to "9.1 Storing a 100% Mass"

Step 3 If a container is needed, place the tare item only
 on the weighing pan and press the [TARE] switch.

Step 4 It is now possible to put something on the
 weighing pan and read the percentage.

Step 5 Remove all things from the weighing pan.

Note
 The pan shape depends
 on the scale model.
10. Accumulation Function

This function counts the number of weighed items, calculates the total mass value and can display the number and accumulated mass value.

The accumulation function is displayed with up to 6 digits. The balance can not display 7 or more digits, therefore the leading digits are not displayed.

Example: With 60K type, when importing the data of 17 accumulations of up to 60kg (60.000 X 17=1020.000), the balance displays this as “020.000”.

Set the parameters of the "accumulation function (f8)" in the function table, in advance, to use this function.

The accumulation count and accumulated mass value are stored in the scale even if the power is removed.

Operation and Switches

- The display of the accumulation count has a blinking without a unit.
- The display of the accumulated mass value has a unit and a blinking.
- Pressing the MODE switch, the accumulation count and accumulated mass value are displayed.
- Pressing the ZERO switch in the accumulation function (is blinking), the current function resets. (The count and accumulated mass value become zero.)

Caution

The accumulation function can be used with the first weighing unit accumulated.

Parameter List and Word Definition

- The "nearly-zero" is within ±5 digits from the zero point in the unit of kg.
- The "digit", a unit of display, is equivalent to the minimum measurable mass.
- The "zero point" is the fundamental starting point to weigh anything.

<table>
<thead>
<tr>
<th>Function table</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>F8 0</td>
<td>Accumulation function not used.</td>
</tr>
<tr>
<td>F8 1</td>
<td>The scale accumulates the data, if the F switch is pressed, when the display is a positive stable value without nearly-zero. The next accumulation can be performed after the display is nearly-zero or a negative value.</td>
</tr>
<tr>
<td>F8 2</td>
<td>The scale accumulates the data, if the F switch is pressed, when the display is a stable value and without nearly-zero. The next accumulation can be performed after the display is nearly-zero.</td>
</tr>
<tr>
<td>F8 3</td>
<td>When the display is a positive stable value and without nearly-zero, the scale accumulates the data automatically. The next accumulation can be performed after the display is nearly-zero or a negative value.</td>
</tr>
</tbody>
</table>
10. Accumulation Function

<table>
<thead>
<tr>
<th>Function table</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_8\ 4$</td>
<td>When the display is a stable value and without nearly-zero, the scale accumulates the data automatically. The next accumulation can be performed after the display is nearly-zero. Use Recording the number and mass of articles removed from the weighing pan. (Put the articles on the weighing pan. Press the TARE switch at each removal.)</td>
</tr>
<tr>
<td>$f_8\ 5$</td>
<td>At each finish of the full/dribble batch function, the scale accumulates the data automatically. Use Packaging articles like a powder, it is used for recording the bag number and total mass.</td>
</tr>
</tbody>
</table>

10.1. Preparation (Setting Parameters)

Step 1 Turn off the display.
Press the [ON/OFF] switch while the [ZERO] switch is pressed and held. The function table is displayed.

Step 2 Press the [ENTER] switch to display an item of the accumulation function (f_8).

Step 3 Select a parameter of the accumulation function ($f_8\ 1$ ~ $f_8\ 4$) with the \wedge switch.

Step 4 Press the [ENTER] switch and the [F] switch to display [End]. Press the [ENTER] switch to return to the normal weighing mode.
10.2. Operation and Performance (Examples)

Example 1
Weighing each article, the scale makes the accumulation according to $F_8 3$.

Step 1 Press the [MODE] switch to display M_+.

Step 2 Press the [ZERO] switch to reset the accumulation data.

Step 3 Return to the kg mode using the [MODE] switch.

Step 4 Put an article on the weighing pan. Wait for the stability mark to be displayed and the value to be blinking. Remove the article and press the [ZERO] switch.

Step 5 Weigh additional articles using step 4.

Step 6 Press the [MODE] switch to display the number of articles and total mass with M_+.

Example 2
This example accumulates the articles that were removed from the weighing pan. The function parameter is set to $F_8 4$.

Step 1 Enter into the kg mode using the [MODE] switch.
Put all articles on the weighing pan and press the [TARE] switch.

Step 2 Press the [MODE] switch to display M_+.

Step 3 Press the [ZERO] switch to reset the accumulation data.
Retun to kg mode with the [MODE] switch.

Step 4 Remove an article from the weighing pan. Wait for the stability mark to be displayed and the value to be blinking. Press the [TARE] switch.

Step 5 Weigh additional articles using step 4.

Step 6 Press the [MODE] switch to display the number of articles and total mass with M_+.

10. Accumulation Function
11. Upper/Lower Comparator Function

- This function compares a display value with the upper limit (HI), the lower limit (LO) and displays the result.
- Set the "comparator function (F6 0 ~ F6 7)" parameters, upper limit value (HI) and lower limit value (LO) in the function table, in advance, to use this function.
- Install option OP-03 or OP-04, to use the relay output of the comparator.
- Install option OP-03, to use the buzzer output of the comparator.
- The settings are stored in the scale even if the power is removed. (Refer to Caution on the next page.)

Comparator Indicators
Comparison results are displayed by indicators HI OK LO.

Comparison Condition
Weighing value < lower limit value LO is displayed and output.
Lower limit value ≤ weighing value ≤ upper limit value ... OK is displayed and output.
Upper limit value < weighing value HI is displayed and output.

Parameter List and Word Definition
- The decimal point is not displayed in the upper or lower limit value settings.
- The "nearly-zero" is within ±5 digits from the zero point in the unit of kg.
- The "digit", a unit of display, and is equivalent to the minimum measurable mass.
- The "zero point" is the fundamental starting point to weigh anything.

<table>
<thead>
<tr>
<th>Function table</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6 0</td>
<td>Pressing the [SET] switch, the scale always compares the current display value. Press the [SET] switch again to stop the comparison.</td>
</tr>
<tr>
<td>F6 1</td>
<td>The scale always compares the display value.</td>
</tr>
<tr>
<td>F6 2</td>
<td>Pressing the [SET] switch, the scale always compares the display value if not nearly-zero.</td>
</tr>
<tr>
<td>F6 3</td>
<td>The scale always compares the display value if not nearly-zero.</td>
</tr>
<tr>
<td>F6 4</td>
<td>When the display value becomes stable after pressing the [SET] switch, the scale compares the display value. It does not compare on an unstable condition. If the [SET] switch is pressed again, the scale stops the comparison.</td>
</tr>
<tr>
<td>F6 5</td>
<td>When the display value is stable, the scale compares the display value. It does not compare on an unstable condition.</td>
</tr>
<tr>
<td>F6 6</td>
<td>When the display value becomes stable, while not nearly-zero, after pressing the [SET] switch, the scale compares the display value. It does not compare on an unstable condition. If the [SET] switch is pressed again, the scale stops the comparison.</td>
</tr>
<tr>
<td>Function table</td>
<td>Meaning and purpose</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>f6 7</td>
<td>When the display value becomes stable and not nearly-zero, the scale compares the value. It does not compare on an unstable condition.</td>
</tr>
</tbody>
</table>

Caution
- The upper limit value (HI) must be greater than the lower limit value (LO).
- The parameters of the upper limit value (HI) and the final value (HI) use the same memory. The parameters of the lower limit value (LO) and the preliminary value (OK) use the same memory.
- The upper/lower comparator function, the simple batch function and the full/dribble batch function cannot be used at the same time because these parameters use common memory.

11.1. Preparation (Setting Parameters)

Step 1
Turn off the display.
Press the [ON/OFF] switch while the [ZERO] switch is pressed and held. The function table is displayed.

Step 2
Press the [ENTER] switch to display an item of the comparator function ([f6]).

Step 3
Select a parameter of the comparator function ([f6 0 ~ f6 7]) with the [∧] switch.

Step 4
Press the [ENTER] switch and the [F] switch to display [End]. Press the the [ENTER] switch to return to the normal weighing mode.
Step 5 If either of f6 0, f6 2, f6 4, f6 6 has been selected, press the SET switch to use the comparator.

Step 6 Press the MODE switch to display the blinking HI.

Step 7 Set the upper limit value by using the following switches.
 \[\wedge \] switch Selecting the number of a figure.
 \[< \] switch Selecting a figure.
 \[F \] switch Selecting the polarity (+,-).

Step 8 Press the ENTER switch to store the new parameter and display the blinking LO.

Step 9 Set the lower limit value by using the following switches.
 \[\wedge \] switch Selecting the number of a figure.
 \[< \] switch Selecting a figure.
 \[F \] switch Selecting the polarity (+,-).

Step 10 Press the ENTER switch to store the new parameters and display the weighing mode.
 If the lower limit value is greater than the upper limit value, the scale returns to step 7.
11.2. Operation and Performance (Examples)

Example 1
This example is set as follows:

<table>
<thead>
<tr>
<th>Function table</th>
<th>f6</th>
<th>f1</th>
</tr>
</thead>
</table>

(The scale always compares the weight value even when the value is nearly-zero.)

Upper limit value (HI) 7.000kg
Lower limit value (LO) 6.500kg

Case
- The comparison starts at turning the scale on.
- When the current value is less than 6.500kg, LO is displayed.
- When the current value is 6.500kg to 7.000kg, OK is displayed.
- When the current value is greater than 7.000kg, HI is displayed.

Example 2
This example is set as follows:

<table>
<thead>
<tr>
<th>Function table</th>
<th>f6</th>
<th>f4</th>
</tr>
</thead>
</table>

(Pressing the [SET] switch, after the stability mark is displayed, the scale compares the current display value with the upper limit value and the lower limit value immediately.)

Upper limit value (HI) 2.000kg
Lower limit value (LO) -1.000kg

Case
- Pressing the [SET] switch, the comparison is performed after displaying the stability mark.
- When the current value is less than -1.000kg, LO is displayed.
- When the current value is -1.000kg to 2.000kg, OK is displayed.
- When the current value is greater than 2.000kg, HI is displayed.
12. Full/Dribble Batch Function

- This function changes the scale to a filling machine which subdivides a bulk product (like grain) into loads of predetermined and virtually constant mass.
- Set the parameters of the "comparator function (\(\text{f6} \quad 9 \))", "full/dribble batch sub-function (\(\text{f10} \quad 0 \sim \text{f10} \quad 3 \))" in the function table, final value (HI), preliminary value (OK) and zero band (LO), in advance, to use this function.
- Install option OP-03 or OP-04, to use the relay output of the full/dribble batch function.
- In case of building up a filling machine with a scale and hopper, the performance and processing product of the system are assumed to be as follows:
- The settings are stored in the scale even if the power is removed. (Refer to Caution on the next page.)

Procedure

<table>
<thead>
<tr>
<th>Indicator and Output</th>
<th>READY indicator</th>
<th>Zero band, LO indicator</th>
<th>LO relay</th>
<th>Full flow, OK indicator</th>
<th>OK relay</th>
<th>Dribble flow, HI indicator</th>
<th>HI relay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>Blinking</td>
</tr>
<tr>
<td>Zero band, LO indicator</td>
<td>Make</td>
<td>Break</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>Break</td>
<td>ON</td>
</tr>
<tr>
<td>LO relay</td>
<td>Make</td>
<td>Break</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>Break</td>
<td>Make</td>
</tr>
<tr>
<td>Full flow, OK indicator</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>OK relay</td>
<td>Break</td>
<td>Make</td>
<td>Break</td>
<td>Break</td>
<td>Break</td>
<td>Break</td>
<td>Break</td>
</tr>
<tr>
<td>Dribble flow, HI indicator</td>
<td>Break</td>
<td>Make</td>
<td>Make</td>
<td>Make</td>
<td>Make</td>
<td>Break</td>
<td>Break</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gross < Zero band (Zero detection Level)</th>
<th>Zero band indicator/ LO relay output</th>
<th>Preliminary value indicator/ OK relay output</th>
<th>Final value indicator/ HI relay output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON / Make</td>
<td>OFF / Break</td>
<td>OFF / Break</td>
<td>OFF / Break</td>
</tr>
</tbody>
</table>

| Net < Final - Preliminary | OFF / Break | ON / Make | ON / Make |

| Final - Preliminary ≤ Net < Final | OFF / Break | OFF / Break | ON / Make |

| Final = Net | OFF / Break | OFF / Break | OFF / Break |
Caution
- The comparison of the full/dribble batch function is a one way sequence (not reversible). If the display value becomes less than the final value after the value reached a predetermined target value, neither HI nor LO is on.
- The parameters of the upper limit value (HI) and the final value (HI) use the same memory. The parameters of the lower limit value (LO) and the preliminary value (OK) use the same memory.
- The upper/lower comparator function, the simple batch function and the full/dribble batch function cannot be used at the same time because these parameters use common memory.
- Set the zero band greater than the tare value.

Operation
- Pressing the [SET] switch, the scale starts the batch process.
- Selecting a parameter from [f10 0] or [f10 2] of the full/dribble batch sub-function, the [F] switch works as the finish switch.

Parameter List and Word Definition
- The "gross" is a total weighing value where the tare value is not subtracted.
- The "net" is a measurement value with the tare value subtracted from the gross.
- The "zero band" is the zero detection level.
- The "zero point" is the fundamental starting point to weigh anything.

Comparator

<table>
<thead>
<tr>
<th>Function table</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>f6 9</td>
<td>Full/dribble batch function.</td>
</tr>
</tbody>
</table>

Full/dribble batch sub-function

<table>
<thead>
<tr>
<th>Function table</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>f10 0</td>
<td>Reaching final value and pressing the [F] switch, the current process is finished.</td>
</tr>
<tr>
<td>f10 1</td>
<td>Reaching final value and displaying the stability mark, the current process is finished automatically.</td>
</tr>
<tr>
<td>f10 2</td>
<td>Pressing the [SET] switch, the scale automatically tares and starts the full/dribble batch process. Reaching final value and pressing the [F] switch, the current process is finished.</td>
</tr>
<tr>
<td>f10 3</td>
<td>Pressing the [SET] switch, the scale automatically tares and starts the full/dribble batch process. Reaching final value and displaying the stability mark, the current process is finished.</td>
</tr>
</tbody>
</table>

Hold

<table>
<thead>
<tr>
<th>Function table</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>f12 0</td>
<td>The hold function is not used.</td>
</tr>
</tbody>
</table>
12.1. Preparation (Setting Parameters)

Step 1 Turn off the display.
Press the [ON/OFF] switch while the [ZERO] switch is pressed and held. The function table is displayed.

Step 2 Press the [ENTER] switch to display an item of the comparator function ([F6]).

Step 3 Select a parameter of the full/dribble batch function ([F6 9]) with the [∧] switch.

Step 4 Press the [ENTER] switch to store the new parameter and display an item of the full/dribble batch sub-function ([F10]).

Step 5 Select a parameter of the full/dribble batch sub-function ([F10 0 ~ F10 3]) with the [∧] switch.

Step 6 Press the [ENTER] switch and the [F] switch to display [End].

Step 7 Press the [ENTER] switch to return to the normal weighing mode.
Step 8 Press the **MODE** switch to display the blinking HI (of the final value).

Step 9 Set the final value using the following switches.
- **∧** switch: Selecting the number of a figure.
- **<** switch: Selecting a figure.

Step 10 Press the **ENTER** switch to store the new parameter and display the blinking OK (of preliminary value).

Step 11 Set the preliminary value using the following switches.
- **∧** switch: Selecting the number of a figure.
- **<** switch: Selecting a figure.

Step 12 Press the **ENTER** switch to store the new parameter and display the blinking LO (of zero band).

Step 13 Set a zero band which is greater than the tare value, using the following switches.
- **∧** switch: Selecting the number of a figure.
- **<** switch: Selecting a figure.

Step 14 Press the **ENTER** switch to store the new parameter and display the weighing mode.
13. Simple Batch Function

- This function compares a display value with the final value, preliminary value and zero band for the full/dribble batch function. The result is indicated by zero band (LO indicator), full flow (HI indicator) and dribble flow (OK indicator). Even if a weighing value includes increase and decrease, this function can compare it.

- Set the parameters of the "simple batch function (f6 8)", in the function table, final value (HI), preliminary value (OK) and zero band (LO), in advance, to use this function.

- Install option OP-03 or OP-04, to use the relay output of the comparison.

- Install option OP-03, to use the buzzer output of the comparator.

- The settings are stored in the scale even if the power is removed. (Refer to Caution on the next page.)

Weighing and Parameters

![Weighing and Parameters Diagram]

Indicator and Output

<table>
<thead>
<tr>
<th>Condition</th>
<th>Zero band, LO indicator</th>
<th>Preliminary, OK indicator</th>
<th>Final, HI indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero band, LO indicator</td>
<td>ON Make</td>
<td>OFF Break</td>
<td>OFF Break</td>
</tr>
<tr>
<td>Preliminary, OK indicator</td>
<td>OFF Break</td>
<td>OFF Break</td>
<td>ON ON Break Make</td>
</tr>
<tr>
<td>Final, HI indicator</td>
<td>OFF Break</td>
<td>OFF Break</td>
<td>OFF Break Make</td>
</tr>
<tr>
<td>HI relay output</td>
<td></td>
<td></td>
<td>OFF Break Make</td>
</tr>
</tbody>
</table>

Comparison Condition

- Gross < Zero bandLO is displayed and output.
- Final - Preliminary ≤ NetOK is displayed and output.
- Final ≤ NetOK, HI are displayed and output.

Parameter List and Word Definition

- The "gross" is a total measurement value where the tare value is not subtracted.
- The "net" is a measurement value with a tare value subtracted from the gross.
- The "tare" is an item put on the weighing pan and its mass is subtracted from the gross.
- The "zero band" is the zero detection level.
- The "zero point" is the fundamental starting point to weigh anything.

<table>
<thead>
<tr>
<th>Function table</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>f6 8</td>
<td>Simple batch function</td>
</tr>
</tbody>
</table>
Caution

- The parameters of the upper limit value (HI) and a final value (HI) use the same memory. The parameters of the lower limit value (LO) and the preliminary value (OK) use the same memory.
- The upper/lower comparator function, the simple batch function and the full/dribble batch function cannot be used at the same time because these parameters use common memory.

13.1. Preparation (Setting Parameters)

Step 1 Turn off the display.
Press the [ON/OFF] switch while the [ZERO] switch is pressed and held. The function table is displayed.

Step 2 Press the [ENTER] switch to display an item of the comparator function (f6).

Step 3 Select a parameter of the simple batch function (f6 8) with the [∧] switch.

Step 4 Press the [ENTER] switch and the [F] switch to display End.

Step 5 Press the [ENTER] switch to return to the normal weighing mode.
13. Simple Batch Function

Step 6 Press the [MODE] switch to display the blinking HI (of the final value).

Step 7 Set the final value using the following switches.
- \(\triangleleft\) switch: Selecting the number of a figure.
- \(<\) switch: Selecting a figure.

Step 8 Press the [ENTER] switch to store the new parameter and display the blinking OK (of preliminary value).

Step 9 Set the preliminary value using the following switches.
- \(\triangleleft\) switch: Selecting the number of a figure.
- \(<\) switch: Selecting a figure.

Step 10 Press the [ENTER] switch to store the new parameter and display the blinking LO (of zero band).

Step 11 Set the zero band using the following switches.
- \(\triangleleft\) switch: Selecting the number of a figure.
- \(<\) switch: Selecting a figure.

Step 12 Press the [ENTER] switch to store the new parameter and display the weighing mode.

13.2. Operation and Performance (Examples)

Step 1 Select the parameter \([f_6, f_8]\) of the function table.
Step 2 Set the parameters of the final value, preliminary value and zero band.
Step 3 The comparison result is always displayed.

Comparison Condition
- Gross \(<\) Zero bandLO is displayed and output.
- Final - Preliminary \(\leq\) Net.....................OK is displayed and output.
- Final \(\leq\) NetOK, HI are displayed and output.
14. Calibration (Adjusting the Scale)

- The scale is an instrument which measures the "weight" and displays its "mass" value. Calibration is the adjustment function so that the scale can weigh correctly.

- There are three steps to calibration.

 Gravity Acceleration Correction ... When a calibrated scale is moved to a distant place, the scale can correctly weigh anything by revising to a new local gravity acceleration. Refer to the "Gravity Acceleration Table" on the next page.

 Calibration of the Zero Point When there is nothing on the weighing pan, it is the function that performs adjustment so as to display the zero point mark .

 Comment The zero point, is the fundamental starting point to weigh anything, influences the performance of scale.

 Span Calibration The function that adjusts the span with a calibrated mass so the scale can accurately weigh anything within the weighing capacity.

 Comment Span means the range of weighing capacity. Use a calibration mass heavier than two thirds of the weighing capacity.

Caution

- Periodically check the accuracy of weighing. Calibrate the scale, if it is moved to another location or the environment has changed.

- It is not necessary to set the gravity acceleration correction, when calibrating the scale with a calibration mass at the place where the scale is to be used.
14.1.1. The Gravity Acceleration Table

<table>
<thead>
<tr>
<th>City</th>
<th>Gravity Acceleration</th>
<th>City</th>
<th>Gravity Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>9.813 m/s²</td>
<td>Manila</td>
<td>9.784 m/s²</td>
</tr>
<tr>
<td>Athens</td>
<td>9.800 m/s²</td>
<td>Melbourne</td>
<td>9.800 m/s²</td>
</tr>
<tr>
<td>Auckland NZ</td>
<td>9.799 m/s²</td>
<td>Mexico City</td>
<td>9.779 m/s²</td>
</tr>
<tr>
<td>Bangkok</td>
<td>9.783 m/s²</td>
<td>Milan</td>
<td>9.806 m/s²</td>
</tr>
<tr>
<td>Birmingham</td>
<td>9.813 m/s²</td>
<td>New York</td>
<td>9.802 m/s²</td>
</tr>
<tr>
<td>Brussels</td>
<td>9.811 m/s²</td>
<td>Oslo</td>
<td>9.819 m/s²</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>9.797 m/s²</td>
<td>Ottawa</td>
<td>9.806 m/s²</td>
</tr>
<tr>
<td>Calcutta</td>
<td>9.788 m/s²</td>
<td>Paris</td>
<td>9.809 m/s²</td>
</tr>
<tr>
<td>Chicago</td>
<td>9.803 m/s²</td>
<td>Rio de Janeiro</td>
<td>9.788 m/s²</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>9.815 m/s²</td>
<td>Rome</td>
<td>9.803 m/s²</td>
</tr>
<tr>
<td>Cyprus</td>
<td>9.797 m/s²</td>
<td>San Francisco</td>
<td>9.800 m/s²</td>
</tr>
<tr>
<td>Djakarta</td>
<td>9.781 m/s²</td>
<td>Singapore</td>
<td>9.781 m/s²</td>
</tr>
<tr>
<td>Frankfurt</td>
<td>9.810 m/s²</td>
<td>Stockholm</td>
<td>9.818 m/s²</td>
</tr>
<tr>
<td>Glasgow</td>
<td>9.816 m/s²</td>
<td>Sydney</td>
<td>9.797 m/s²</td>
</tr>
<tr>
<td>Havana</td>
<td>9.788 m/s²</td>
<td>Taiwan</td>
<td>9.788 m/s²</td>
</tr>
<tr>
<td>Helsinki</td>
<td>9.819 m/s²</td>
<td>Taipei</td>
<td>9.790 m/s²</td>
</tr>
<tr>
<td>Kuwait</td>
<td>9.793 m/s²</td>
<td>Tokyo</td>
<td>9.798 m/s²</td>
</tr>
<tr>
<td>Lisbon</td>
<td>9.801 m/s²</td>
<td>Vancouver, BC</td>
<td>9.809 m/s²</td>
</tr>
<tr>
<td>London (Greenwich)</td>
<td>9.812 m/s²</td>
<td>Washington DC</td>
<td>9.801 m/s²</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>9.796 m/s²</td>
<td>Wellington NZ</td>
<td>9.803 m/s²</td>
</tr>
<tr>
<td>Madrid</td>
<td>9.800 m/s²</td>
<td>Zurich</td>
<td>9.807 m/s²</td>
</tr>
</tbody>
</table>
14.2. The Complete Calibration Procedure

14.2.1. Gravity Acceleration Correction

Step 1 Turn on the display.
Open the rear cover of the display unit.
Press and hold the CAL switch, it is in the depth of 5cm, to enter the calibration mode.
Then CAL 0 is displayed.

Step 2 Press the ZERO switch to enter the gravity acceleration correction mode.

Step 3 Set your local gravity acceleration using the following switches.
∧ switch Selecting the number of a figure.
< switch Selecting a figure.

Step 4 Press the ENTER switch to store the new value.
Then CAL 0 is displayed.

Step 5 Press the CAL switch again. Then the scale returns to the normal weighing mode.

14.2.2. Preparation

Step 6 Confirm the environmental conditions as follows:
Maintain a constant temperature and stable power.
Install the scale on a solid floor where there is no draft, vibration, strong magnetic fields or direct sunlight.
Consider section "4. Caution".

Step 7 Display normal weighing for at least 30 minutes to warm up the scale.
14.2.3. Calibration of the Zero Point

Step 8 Press and hold the [CAL] switch to enter the calibration mode after displaying normal weighing for 30 minutes. Then [CAL 0] is displayed.

Step 9 With nothing on the weighing pan, press the [ENTER] switch while the stable mark is displayed. The scale stores the current condition as the zero point.

Step 10 The scale displays \(5\pi n\) for several seconds. Finishing the calibration mode at this stage, proceed to step 14.

14.2.4. Span Calibration

Step 11 Set the value of the calibration mass using the following switches. (This initial value is according to each model.)

- \(\uparrow\) switch: Selecting the number of a figure.
- \(<\) switch: Selecting a figure.

Step 12 Place the mass on the weighing pan which was set at step 11, press the [ENTER] switch while the stable mark is displayed. The scale then calculates the span and stores it.

Step 13 The scale displays \(End\) at the finish. Remove the mass from the weighing pan.

Step 14 Press the [CAL] switch to return to the normal weighing mode.

Note: The pan shape depends on the scale model.
15. The Function Table

The function table is the function to store and refer items that determine the performance of the scale. Each item has a parameter.

- The parameters are maintained even without power applied.

15.1. The Procedure for Setting Parameters

Step 1 Turn off the display.
Press the ON/OFF switch while the ZERO switch is pressed and held. The function table is displayed.

Step 2 Set parameters for each item using the following switches.
\(\wedge \) switch Selecting the parameter of an item.
\(<\) switch Selecting a figure.
\(F \) switch Proceeding to Step 3 without storing the parameter.
\(\text{ENTER} \) switch Storing a parameter for the current item and proceeding to the next item.

Step 3 When the end of the table is reached, \(\text{End} \) is displayed.

Step 4 Press the \(\text{ENTER} \) switch to store the new parameters and return to the normal weighing mode.
15.2. Parameter List

<table>
<thead>
<tr>
<th>Item</th>
<th>Display</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>f1</td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selects the way of changing weighing range for HV-WP series.</td>
</tr>
<tr>
<td>A</td>
<td>f2 0 #</td>
<td>Automatic range</td>
</tr>
<tr>
<td></td>
<td>f2 1</td>
<td>Manual range using the [RANGE] switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selection of the first unit at the time when the scale turns on.</td>
</tr>
<tr>
<td>A</td>
<td>f3 0 #</td>
<td>Kg</td>
</tr>
<tr>
<td></td>
<td>f3 1</td>
<td>Lb</td>
</tr>
<tr>
<td></td>
<td>f3 2</td>
<td>Oz</td>
</tr>
<tr>
<td></td>
<td>f3 3</td>
<td>lb-oz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selects the transmission rate of the serial interface (RS-232C/ 422/485).</td>
</tr>
<tr>
<td>A</td>
<td>f4 0 #</td>
<td>2400bps</td>
</tr>
<tr>
<td></td>
<td>f4 1</td>
<td>4800bps</td>
</tr>
<tr>
<td></td>
<td>f4 2</td>
<td>9600bps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode selection for the serial interface (RS-232C/ 422/485).</td>
</tr>
<tr>
<td>A</td>
<td>f5 0 #</td>
<td>Stream mode. (Refer to "16.2 Stream Mode")</td>
</tr>
<tr>
<td></td>
<td>f5 1</td>
<td>Command mode. (Refer to "16.3 Command Mode")</td>
</tr>
<tr>
<td></td>
<td>f5 2</td>
<td>Data is output, when the [PRINT] switch is pressed.</td>
</tr>
<tr>
<td></td>
<td>f5 3</td>
<td>Auto-print + When the display becomes a positive stable value without nearly-zero, the scale outputs the data automatically. Next output can be performed after the display becomes nearly-zero or a negative value.</td>
</tr>
<tr>
<td></td>
<td>f5 4</td>
<td>Auto-print +/- When the display becomes a stable value without nearly-zero, the scale outputs the data automatically. Next output can be performed after the display becomes nearly-zero.</td>
</tr>
<tr>
<td></td>
<td>f5 5</td>
<td>At each finish of full/dribble batch function, the data is output.</td>
</tr>
<tr>
<td>A</td>
<td>f6 0 #</td>
<td>Pressing the [SET] switch, the scale always compares the current display value. Press the [SET] switch again to stop the comparison.</td>
</tr>
<tr>
<td></td>
<td>f6 1</td>
<td>The scale always compares the display value.</td>
</tr>
<tr>
<td></td>
<td>f6 2</td>
<td>Pressing the [SET] switch, the scale always compares the display value when not nearly-zero. Press the [SET] switch again to stop the comparison.</td>
</tr>
<tr>
<td></td>
<td>f6 3</td>
<td>The scale always compares the display value when not nearly-zero.</td>
</tr>
<tr>
<td></td>
<td>f6 4</td>
<td>When the display value becomes stable after pressing the [SET] switch, the scale compares the display value. It does not compare on an unstable condition. If the [SET] switch is pressed again, the scale stops the comparison.</td>
</tr>
</tbody>
</table>

The "#" is factory settings. The "nearly-zero" is within ±5 digits from zero point in the unit of kg.
<table>
<thead>
<tr>
<th>Item</th>
<th>Display</th>
<th>Meaning and purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparator</td>
<td>F6 5</td>
<td>When the display value becomes stable, the scale compares the display value. It does not compare on an unstable condition.</td>
</tr>
<tr>
<td></td>
<td>F6 6</td>
<td>When the display value becomes stable when not nearly-zero after pressing the SET switch, the scale compares the display value. It does not compare on an unstable condition. If the SET switch is pressed again, the scale stops the comparison.</td>
</tr>
<tr>
<td></td>
<td>F6 7</td>
<td>When the display value becomes stable when not nearly-zero, the scale compares the value. It does not compare on an unstable condition.</td>
</tr>
<tr>
<td></td>
<td>F6 8</td>
<td>Simple batch function. (Refer to section 13.)</td>
</tr>
<tr>
<td></td>
<td>F6 9</td>
<td>Full/dribble batch function. (Refer to section 12.)</td>
</tr>
<tr>
<td>Buzzer</td>
<td>F7 0</td>
<td>No buzzer.</td>
</tr>
<tr>
<td></td>
<td>F7 1</td>
<td>The buzzer sounds at LO.</td>
</tr>
<tr>
<td></td>
<td>F7 2</td>
<td>The buzzer sounds at OK.</td>
</tr>
<tr>
<td></td>
<td>F7 3</td>
<td>The buzzer sounds at LO and OK.</td>
</tr>
<tr>
<td></td>
<td>F7 4</td>
<td>The buzzer sounds at HI.</td>
</tr>
<tr>
<td></td>
<td>F7 5</td>
<td>The buzzer sounds at LO and HI.</td>
</tr>
<tr>
<td></td>
<td>F7 6</td>
<td>The buzzer sounds at OK and HI.</td>
</tr>
<tr>
<td></td>
<td>F7 7</td>
<td>The buzzer sounds at LO, OK and HI.</td>
</tr>
<tr>
<td></td>
<td>F7 8</td>
<td>The buzzer sounds at finishing the full/dribble batch process.</td>
</tr>
<tr>
<td>Accumulation</td>
<td>F8 0</td>
<td>Accumulation function not used.</td>
</tr>
<tr>
<td>function</td>
<td>F8 1</td>
<td>The scale accumulates the data, if the F switch is pressed, when the display becomes a positive stable value without nearly-zero. Next accumulation can be performed after the display becomes nearly-zero or a negative value.</td>
</tr>
<tr>
<td></td>
<td>F8 2</td>
<td>The scale accumulates the data, if the F switch is pressed, when the display becomes a stable value without nearly-zero. Next accumulation can be performed after the display becomes nearly-zero.</td>
</tr>
<tr>
<td></td>
<td>F8 3</td>
<td>When the display becomes a positive stable value without nearly-zero, the scale accumulates the data automatically. Next accumulation can be performed after the display becomes nearly-zero or a negative value. Use After weighing the first unit sample, one after another, it records the total count and total weight value.</td>
</tr>
<tr>
<td></td>
<td>F8 4</td>
<td>When the display becomes a stable value without nearly-zero, the scale accumulates the data automatically. Next accumulation can be performed after the display becomes nearly-zero. Use Recording number and mass of articles removed from the weighing pan. (Put articles on the weighing pan. Press TARE switch at each removal.)</td>
</tr>
<tr>
<td></td>
<td>F8 5</td>
<td>At each finish of the full/dribble batch function, the scale accumulates the data automatically. Use Packing articles like a powder. used for recording the bag number and total mass.</td>
</tr>
<tr>
<td>Item</td>
<td>Display</td>
<td>Meaning and purpose</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Full/Dribble batch sub-function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>Not used</td>
<td>The details of the full/dribble batch function ((F6 \ 9))</td>
</tr>
<tr>
<td>F10 0 #</td>
<td>Reaching final value and pressing the (F) switch, the current process is finished.</td>
<td></td>
</tr>
<tr>
<td>F10 1</td>
<td>Reaching final value and displaying the stability mark, the current process is finished automatically.</td>
<td></td>
</tr>
<tr>
<td>F10 2</td>
<td>Pressing the (\text{SET}) switch, the scale automatically tares and starts the full/dribble batch process. Reaching final value and pressing the (F) switch, the current process is finished.</td>
<td></td>
</tr>
<tr>
<td>F10 3</td>
<td>Pressing the (\text{SET}) switch, the scale automatically tares and starts the full/dribble batch process. Reaching final value and displaying the stability mark, the current process is finished.</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td>Address for RS-422 / RS-485 for option OP-04</td>
</tr>
<tr>
<td>F11 00#</td>
<td>Use this address can be set from 01 to 99. It is possible for a computer to control the scale assigned an address. (RS-232C should be set to "00").</td>
<td></td>
</tr>
<tr>
<td>F11 1 ~ F11 99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hold</td>
<td></td>
<td>The function to hold the current display value. When the value becomes nearly-zero or the weighing value changes more than 25% +30 digits, hold display is canceled.</td>
</tr>
<tr>
<td>F12 0 #</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>F12 1</td>
<td>The hold function is ON or OFF alternately by the (F) switch.</td>
<td></td>
</tr>
<tr>
<td>F12 2</td>
<td>Displaying the stability mark, the display is held.</td>
<td></td>
</tr>
<tr>
<td>Averaging</td>
<td></td>
<td>Selects readability and response.</td>
</tr>
<tr>
<td>F13 0 #</td>
<td>Fast response, sensitive value</td>
<td></td>
</tr>
<tr>
<td>F13 1</td>
<td>Averaging</td>
<td></td>
</tr>
<tr>
<td>F13 2</td>
<td>Slow response, stable value</td>
<td></td>
</tr>
<tr>
<td>Precision of unit mass</td>
<td></td>
<td>Selects a storable minimum unit mass in the counting mode.</td>
</tr>
<tr>
<td>F14 0 #</td>
<td>Stores a unit mass in the unit of a digit.</td>
<td></td>
</tr>
<tr>
<td>F14 1</td>
<td>Stores a unit mass in the unit of one eighth digit.</td>
<td></td>
</tr>
<tr>
<td>F14 2</td>
<td>Stores a unit mass, if the total of the sample mass is greater than 5 digits.</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td></td>
<td>Refer to "16.1. Data Format".</td>
</tr>
<tr>
<td>F15 0 #</td>
<td>Format 1. (A&D general format for scales, balances)</td>
<td></td>
</tr>
<tr>
<td>F15 1</td>
<td>Format 2. (Older HV-A/ HW-A format)</td>
<td></td>
</tr>
<tr>
<td>F15 2</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>F15 3</td>
<td>Format 1 (Return command is available for all commands.)</td>
<td></td>
</tr>
<tr>
<td>F16</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>F17</td>
<td>The function number "F 17" is not displayed.</td>
<td></td>
</tr>
</tbody>
</table>

The "#" is factory settings
The "nearly-zero" is within ±5 digits from zero point in the unit of kg.
The "digit", a unit of display, is equivalent to the minimum measurable mass.
16. RS-232C Serial Interface

Note When the RS-232C serial interface is used, be sure to set the "Address (f11)" to "(00)".

- The RS-232C interface has the following two modes.
 - Stream mode Outputs data continuously and can be used for printing data.
 - Command mode Controls the scale using commands from a computer.

- Set the parameters for the "Baud rate (f4)" , "Output mode (f5)" and "Format (f15)" , in the function table, in advance.

- There are option cables as follows:
 - AX-KO577A-200 RS-232C cable, D-sub 25 pin, 2m
 - AX-KO1786-200 RS-232C cable, D-sub 9 pin, 2m

- Transmission system EIA RS-232C
- Transmission Asynchronous, bi-directional, half-duplex
- Data format Baud rate: 2400, 4800, 9600 bps
 - Data: 7 bits
 - Parity: 1 bit, Even
 - Start bit 1 bit
 - Stop bit 1 bit
 - Code ASCII
 - Terminator CR LF (CR: 0Dh, LF: 0Ah)

- Pin connections

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal name</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>Input</td>
<td>Receive data</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>Output</td>
<td>Transmit data</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
<td>-</td>
<td>Signal ground</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>DSR</td>
<td>Output</td>
<td>Data set ready</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Circuits

- Adaptable connector DIN 8pin, (TCP0586)
16.1. Data Format

Bit Format

Format 1
- There are four headers for the type of data and weighing condition.
 - Stable weighing data: ST
 - Unstable weighing data: US
 - Stable counting data: QT
 - Out of range (Over): OL

- The weighing data consists of 9 characters including decimal point and polarity.
- The polarity is always output.
- There are three units. The unit is 3 characters.
- In case of “out of range”, numbers become all 9’s.
- The terminator is always output as CR LF.

Data in the unit of kg:
```
ST , +000 12.40 kg
```

Counting mode:
```
QT , +0000 30000 PC
```

Percentage mode:
```
ST , +000 300.0 PC %
```

Out of range:
```
OL , +9999 999.9 kg
```

Definition of symbols:
- CR (carriage return): 0Dh
- LF (line feed): 0Ah
- Space: 20h
Format 2
- There are four headers for the type of data and weighing condition.
 - Stable weighing data: ST
 - Unstable weighing data: US
 - Stable counting data: QT
 - Out of range: OL
- The weighing data consists of 7 characters including decimal point and polarity.
- The polarity is always output.
- There are three units. The unit is 2 characters.
- In case of "out of range", numbers become all 9's.
- The terminator is always output as CR LF.

Caution
- When the data is longer than 7 characters in the counting, percentage mode or accumulation function, the overflow is ignored.

Data in the unit of kg

<table>
<thead>
<tr>
<th>Header</th>
<th>Weighing value</th>
<th>Unit</th>
<th>Terminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>+0.0240kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Counting mode

<table>
<thead>
<tr>
<th>Header</th>
<th>Weighing value</th>
<th>Unit</th>
<th>Terminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>QT</td>
<td>+003000PC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage mode

<table>
<thead>
<tr>
<th>Header</th>
<th>Weighing value</th>
<th>Unit</th>
<th>Terminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>+0300.0c%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Out of range

<table>
<thead>
<tr>
<th>Header</th>
<th>Weighing value</th>
<th>Unit</th>
<th>Terminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL</td>
<td>+999.99kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definition of symbols
- CR (carriage return): 0Dh
- LF (line feed): 0Ah
- Space: 20h
16.2. Stream Mode

- The scale outputs the current display data at the time when refreshing the display. The scale does not output data while in the setting mode.

<table>
<thead>
<tr>
<th>Averaging of function table</th>
<th>Refresh rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{13}) (0) Fast response Sensitive value</td>
<td>Approximately 7 times/s while the display is unstable, Approximately 4 times/s when the display is stable</td>
</tr>
<tr>
<td>(F_{13}) (1)</td>
<td>Fast response Slow response Stable value</td>
</tr>
</tbody>
</table>

16.2.1. Preparation and Performance (Examples)

Step 1 Turn off the display.
- Press the [ON/OFF] switch while the [ZERO] switch is pressed and held. The function table is displayed.

Step 2 Press the [ENTER] switch to display \(F_{13} \) 0 ("Baud rate"). Select a parameter of "Baud rate" with the \(\wedge \) switch.

Step 3 Press the [ENTER] switch to display \(F_{15} \) 0 ("Output mode"). Select "Stream mode (\(F_{15} \) 0)" with the \(\wedge \) switch.

Step 4 Press the [ENTER] switch to display \(F_{15} \) 0 ("Format"). Select "Format 1 (\(F_{15} \) 0)" with the \(\wedge \) switch.

Step 5 Press the [ENTER] switch to display End.

Step 6 Press the [ENTER] switch to store the new parameters. The scale returns to the normal weighing mode and outputs the data continuously.
16.3. Command Mode

- The command mode is the function which can perform "output data", "controlling the scale" and "setting parameters" by a command transmitted from a computer.

Caution Allow at least 500 milliseconds between commands.

16.3.1. Command List

The following explanation uses "Format 1 (F 15 0)"

Data output
- The current weighing data is output.
 - Template: Q
 - Command: Q F15 0
 - Reply: S T, +0 0 0 1 2 . 4 0. k g F15 0

Selection of mode and unit
- Selects the mode and unit. This is the same as the MODE switch.
 - Template: U
 - Command: U F15 0
 - Reply: The scale changes mode and unit.

Zero
- The current mass value is set to the zero point.
 - This is the same as the ZERO switch.
 - Template: Z
 - Command: Z F15 0
 - Reply: The mass value becomes zero and the zero point mark is displayed.

Tare
- The current mass value is set to zero after placing a tare (container, receptacle, case, etc) and the net value is displayed. This is the same as the TARE switch.
 - Template: T
 - Command: T F15 0
 - Reply: The current mass value becomes zero and the net mark is displayed.

Cancel of tare
- The display value becomes the gross and the net mark is turned off. (The tare value becomes zero.)
 - Template: CT
 - Command: C T F15 0
 - Reply: Gross is displayed and the net mark is turned off.
Preset tare

The tare value is set and the net value is displayed. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.

Template PT, [parameter]

Command PT, +00120

Reply Net is displayed and the net mark is displayed.

Upper limit value

An upper limit value is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.

Template HI, [parameter]

Command HI, +01200

Reply The upper limit value is stored.

Caution The upper limit value must be greater than the lower limit value.

Lower limit value

A lower limit value is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.

Template LO, [parameter]

Command LO, -00400

Reply The lower limit value is stored.

Caution The lower limit value must be less than the upper limit value.

Accumulation data output

The accumulated data is output.

Template A

Command A

Reply Accumulation data is output.

Accumulation count output

The number of accumulated data is output.

Template N

Command N

Reply Accumulation count is output.

Reset of Accumulation data and Accumulation count

The data and number of accumulations become zero.

Template CA

Command CA

Reply The data and number of accumulations become zero.
Final value
The final value is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.
Template S0, [parameter]
Command $0, +02000+$
Reply The value is stored.

Preliminary value
The preliminary value is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.
Template S1, [parameter]
Command $1, +00200+$
Reply The value is stored.

Zero band
The zero band is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.
Template S2, [parameter]
Command $2, +00500+$
Reply The value is stored.
16.3.2. Example of Setting Parameters

Step 1 Turn off the display.
Press the [ON/OFF] switch while the [ZERO] switch is pressed and held. The function table is displayed.

Step 2 Press the [ENTER] switch to display [F4] ("Baud rate").
Select a parameter of "Baud rate" with the ▲ switch.

Step 3 Press the [ENTER] switch to display [F5] ("Output mode").
Select "Command mode (F5 1)" with the ▲ switch.

Step 4 Press the [ENTER] switch to display [F15] ("Format").
Select "Format 1 (F15 0)" with the ▲ switch.

Step 5 Press the [ENTER] switch to display [End].

Step 6 Press the [ENTER] switch to store the new parameters.
The scale returns to the normal weighing mode.

Step 7 When the computer transmits a command, the scale replies.
17. Options

17.1. Extension Cable (OP-02)

- This cable is used for installing the indicator away from the base unit.
- This loadcell cable is 5m long.
- Refer to "5.1. Removing the Pole" for the way to remove the pole.

Caution

- Calibrate the scale after connecting this cable.
- Do not connect more than two extension cables.

Note

The pan shape depends on the scale model.

AX:043005266

To be purchased separately as an option.
17.2. RS–232C/ Relay Output/ Buzzer (OP-03)

Note When the OP-03 is used, be sure to set the "Address (F11)" to "(00)".

- This option replaces the standard RS-232C interface, refer to "16. RS-232C Serial Interface" for specification of RS-232C.

- The following option cables can be used, when you do not use the relay output.
 - AX-KO577A-200 RS-232C cable, D-sub 25 pin, 2 m
 - AX-KO1786-200 RS-232C cable, D-sub 9 pin, 2 m

Pin connections

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal name</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HI</td>
<td>Output</td>
<td>Relay output of HI</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
<td>Input</td>
<td>Receive data</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
<td>Output</td>
<td>Transmit data</td>
</tr>
<tr>
<td>4</td>
<td>LO</td>
<td>Output</td>
<td>Relay output of LO</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
<td></td>
<td>Signal ground (RS-232C)</td>
</tr>
<tr>
<td>6</td>
<td>OK</td>
<td>Output</td>
<td>Relay output of OK</td>
</tr>
<tr>
<td>7</td>
<td>DSR</td>
<td>Output</td>
<td>Data set ready</td>
</tr>
<tr>
<td>8</td>
<td>COM</td>
<td></td>
<td>Relay common terminal</td>
</tr>
</tbody>
</table>

- Adaptable connector: DIN 8pin, JA:TCP0586 (of accessory)

- Circuits

- Relay: Solid-state-relay
 - Maximum voltage: DC50V
 - Maximum current: DC100mA
 - Maximum resistance: 8 Ω
17.2.1. Installing the OP–03

Caution Do not pull on the connected cables while opening the rear panel.

Step 1 Remove the plastic panel from the option board.

Step 2 Remove eight pairs of screws and O rings from the indicator unit. Open the rear panel of the unit.

Step 3 Remove the standard interface board from the indicator unit. Install the option board at the same position.

Step 4 Connect the cable to the J1 connector on the option board.

Step 5 Connect the DIN plug to the option board.

Step 6 Close and secure the rear panel using the screws and O rings removed at step 2.
Replacing the standard RS-232C interface with this option, the RS-422/RS-485 interface can connect up to 16 scales and control them from a computer.

The RS-422/RS-485 interface has the following two modes.
- **Stream mode**: Outputs data continuously.
- **Command mode**: Controls the scale using commands from a computer.

Set the parameters for the "Baud rate (F4)", "Output mode (F5)", "Address (F11)", "Format (F15)", in the function table, in advance.

Transmission system EIA RS-422/RS-485

Transmission Asynchronous, bi-directional, half-duplex

Data format
- Baud rate: 2400, 4800, 9600 bps
- Data: 7 bits
- Parity: 1 bit, Even
- Start bit: 1 bit
- Stop bit: 1 bit
- Code: ASCII
- Terminator: CR LF (CR: 0Dh, LF: 0Ah)

Address 01 ~ 99 Address parameter (F11) of the function table.

Relay Solid-state-relay
- Maximum voltage: DC50V
- Maximum current: DC100mA
- Maximum resistance: 8 Ω

Adaptable connector TM:BLA9 (of accessory)

Pin connections

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal name</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA</td>
<td>Output</td>
<td>RS-422/485 transmission A terminal</td>
</tr>
<tr>
<td>2</td>
<td>SDB</td>
<td>Output</td>
<td>RS-422/485 transmission B terminal</td>
</tr>
<tr>
<td>3</td>
<td>RDA</td>
<td>Input</td>
<td>RS-422/485 receive A terminal</td>
</tr>
<tr>
<td>4</td>
<td>RDB</td>
<td>Input</td>
<td>RS-422/485 receive B terminal</td>
</tr>
<tr>
<td>5</td>
<td>TRM</td>
<td>-</td>
<td>120Ω terminator</td>
</tr>
<tr>
<td>6</td>
<td>HI</td>
<td>Output</td>
<td>Relay output of HI</td>
</tr>
<tr>
<td>7</td>
<td>OK</td>
<td>Output</td>
<td>Relay output of OK</td>
</tr>
<tr>
<td>8</td>
<td>LO</td>
<td>Output</td>
<td>Relay output of LO</td>
</tr>
<tr>
<td>9</td>
<td>COM</td>
<td>-</td>
<td>Relay common terminal</td>
</tr>
</tbody>
</table>
17.3.1. Installing the OP–04

Caution Do not pull on the connected cables while opening the rear panel.

Step 1 Remove eight pairs of screws and O rings from the indicator unit. Open the rear panel of the unit.

Step 2 Remove the standard interface board from the indicator unit. Install the option board at the same position.

Step 3 Connect the cable to the J3 connector on the option board.

Step 4 Wire the connector for J1 and connect it to the option board.

Step 5 Connect a cable from the transformer to the J2 connector.

Step 6 Set a interface type with the switch.

Step 7 Close and secure the rear panel using the screws and O rings removed at step 1.
An example of connection

The polarities (A,B) of the host computer signal depends on the computer model.

17.3.2. Communication Format

- Commands consist of an address and the same command as for the RS-232C.
- The address of the equipment is inserted in the first part of the command.
- Commands return the same command when the communication format is F15 3 and there is no data transmitted.
- If the address is 23, the reply is as follows:

 Normal response

 Impossible command response

 Undefined command response

Bit format

Differential (A - B)
-2V ~ -5V
+2V ~ +5V
17.3.3. Command List

The following explanation uses "Format 1 (F15 3)" assuming 23 as the address.

Data Output

The current weighing data is output.

<table>
<thead>
<tr>
<th>Template</th>
<th>Command</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>@23QF5H3-</td>
<td></td>
</tr>
</tbody>
</table>

Selection of Mode and Unit

Selects the mode and unit. This is the same as the [MODE] switch.

<table>
<thead>
<tr>
<th>Template</th>
<th>Command</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>@23UF5H3-</td>
<td></td>
</tr>
</tbody>
</table>

The scale changes mode and unit.

Zero

The current mass value is set to the zero point. This is the same as the [ZERO] switch.

<table>
<thead>
<tr>
<th>Template</th>
<th>Command</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>@23ZF5H3-</td>
<td></td>
</tr>
</tbody>
</table>

The mass value becomes zero and the zero point mark is displayed.

Tare

The current mass value becomes zero after placing a tare (receptacle, case, etc) and the net is displayed. This is the same as the [TARE] switch.

<table>
<thead>
<tr>
<th>Template</th>
<th>Command</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>@23TF5H3-</td>
<td></td>
</tr>
</tbody>
</table>

The current mass value becomes zero and the net mark is displayed.

Cancel of Tare

The display value becomes the gross and the net mark is turned off. (The tare value becomes zero.)

<table>
<thead>
<tr>
<th>Template</th>
<th>Command</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>@23CTF5H3-</td>
<td></td>
</tr>
</tbody>
</table>

Gross is displayed and the net mark is turned off.

Preset Tare

The tare value is set and the net value is displayed. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.

<table>
<thead>
<tr>
<th>Template</th>
<th>Command</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>@23PTF5H3-</td>
<td></td>
</tr>
</tbody>
</table>

Net is displayed and the net mark is displayed.

Upper Limit Value

An upper limit value is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.

<table>
<thead>
<tr>
<th>Template</th>
<th>Command</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>@23HTF5H3-</td>
<td></td>
</tr>
</tbody>
</table>

The upper limit value is stored.

Caution The upper limit value must be greater than the lower limit value.
Lower limit value
A lower limit value is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.
Template: LO, [parameter]
Command: @23LO, -00400Fk-
Reply: @23LO, -00400Fk-
The lower limit value is stored.

Caution
The lower limit value must be less than the upper limit value.

Accumulation data output
The accumulated data is output.
Template: A
Command: @23A, +00012.40kgF-
Reply: @23A, +00012.40kgF-

Accumulation count output
The number of accumulated data is output.
Template: N
Command: @23N, +000001400kgF-
Reply: @23N, +000001400kgF-

Reset of Accumulation data and number
The data and number of accumulations become zero.
Template: CA
Command: @23CA
Reply: @23CA
The data and number of accumulations become zero.

Final value
The final value is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.
Template: S0, [parameter]
Command: @23S0, +002000F-
Reply: @23S0, +002000F-
The value is stored.

Preliminary value
The preliminary value is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.
Template: S1, [parameter]
Command: @23S1, +002000F-
Reply: @23S1, +002000F-
The value is stored.

Zero band
The zero band is stored. The set value is a 5 digit numerical value with a polarity sign and does not contain a decimal point.
Template: S2, [parameter]
Command: @23S2, +00050F-
Reply: @23S2, +00050F-
The value is stored.
17.4. Roller Conveyor (OP–13, OP–14)

Caution - When installing the roller conveyor, calibrate the scale again if necessary.
- When installing the roller conveyor, if not calibrating the scale again, the weighing capacity of the scale decreases by the weight of the roller conveyor

OP–13
This option can be used with the following models.
HV-200KV-WP,
HW-100KV-WP,
HW-200KV-WP

OP–14
This option can be used with the following models.
HV-60KV-WP,
HW-60KV-WP
18. Specification

HV-WP Series

<table>
<thead>
<tr>
<th>Models</th>
<th>HV-15KV-WP</th>
<th>HV-60KV-WP</th>
<th>HV-200KV-WP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighing Capacity [kg]</td>
<td>3</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Min. weighing (1 digit) [g]</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Weighing Capacity [lb]</td>
<td>6</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Min. weighing (1 digit) [lb]</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
</tr>
<tr>
<td>Weighing Capacity [oz]</td>
<td>96</td>
<td>240</td>
<td>480</td>
</tr>
<tr>
<td>Min. weighing (1 digit) [oz]</td>
<td>0.05</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Weighing Capacity [lb_oz]</td>
<td>30 lb</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Min. weighing (1 digit) [lb_oz]</td>
<td>0.1 oz</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Number of samples in counting mode [pieces]</td>
<td>5 (can be changed to 10, 20, 50, 100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. count number [pieces]</td>
<td>15,000</td>
<td>12,000</td>
<td>11,000</td>
</tr>
<tr>
<td>Display</td>
<td>7 segment fluorescent display, Character height 20mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatability [g]</td>
<td>±1</td>
<td>±2</td>
<td>±5</td>
</tr>
<tr>
<td>Linearity [g]</td>
<td>±1</td>
<td>±2</td>
<td>±5</td>
</tr>
<tr>
<td>Span drift</td>
<td>20ppm/°C typ. (5°C ~ 35°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power rating</td>
<td>230V AC (+10%-15%) 50/60Hz 20VA, Fuse T200mA or 120V AC (+10%-15%) 50/60Hz 20VA, Fuse T315mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power source</td>
<td>Please confirm that the local voltage and receptacle type are correct for your scale.(50Hz/60Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature and humidity</td>
<td>-10°C ~ 40°C, Less than 85% R.H. (Do not allow condensation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighing pan size [mm]</td>
<td>250 x 250</td>
<td>330 x 424</td>
<td>390 x 530</td>
</tr>
<tr>
<td>Dimension [mm]</td>
<td>250 x 466 x 377</td>
<td>330 x 615 x 786</td>
<td>390 x 700 x 786</td>
</tr>
<tr>
<td>Mass of scale [kg]</td>
<td>8</td>
<td>13</td>
<td>19</td>
</tr>
</tbody>
</table>

: If the law in your area allows, you can use these units.
HW–WP series

<table>
<thead>
<tr>
<th>Models</th>
<th>HW-10KV-WP</th>
<th>HW-60KV-WP</th>
<th>HW-100KV-WP</th>
<th>HW-200KV-WP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighing Capacity [kg]</td>
<td>10</td>
<td>60</td>
<td>100</td>
<td>220</td>
</tr>
<tr>
<td>Min. weighing (1 digit) [g]</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Weighing Capacity [lb]</td>
<td>#</td>
<td>20</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Min. weighing (1 digit) [lb]</td>
<td>0.002</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Weighing Capacity [oz]</td>
<td>#</td>
<td>320</td>
<td>2400</td>
<td>3200</td>
</tr>
<tr>
<td>Min. weighing (1 digit) [oz]</td>
<td>0.05</td>
<td>0.2</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Weighing Capacity [lb_oz]</td>
<td>#</td>
<td>20 lb</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Min. weighing (1 digit) [lb_oz]</td>
<td>#</td>
<td>0.1 oz</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Number of samples in counting mode [pieces]</td>
<td>5 (can be changed to 10, 20, 50, 100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. count number [pieces]</td>
<td>10,000</td>
<td>12,000</td>
<td>10,000</td>
<td>11,000</td>
</tr>
<tr>
<td>Display</td>
<td>7 segment fluorescent display, Character height 20mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatability [g]</td>
<td>± 2</td>
<td>± 10</td>
<td>± 20</td>
<td>± 40</td>
</tr>
<tr>
<td>Linearity [g]</td>
<td>± 2</td>
<td>± 10</td>
<td>± 20</td>
<td>± 40</td>
</tr>
<tr>
<td>Span drift</td>
<td>20ppm/°C typ. (5°C ~ 35°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power rating</td>
<td>230V AC (+10%-15%) 50/60Hz 20VA, Fuse T200mA or 120V AC (+10%-15%) 50/60Hz 20VA, Fuse T315mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power source</td>
<td>Please confirm that the local voltage and receptacle type are correct for your scale.(50Hz/60Hz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature and humidity</td>
<td>-10°C ~ 40°C, Less than 85% R.H. (Do not allow condensation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weighing pan size [mm]</td>
<td>250 x 250</td>
<td>330 x 424</td>
<td>390 x 530</td>
<td>390 x 530</td>
</tr>
<tr>
<td>Dimension [mm]</td>
<td>250 x 466 x 437</td>
<td>330 x 615 x 786</td>
<td>390 x 700 x 786</td>
<td>390 x 700 x 786</td>
</tr>
<tr>
<td>Weighing pan size [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass of scale [kg]</td>
<td>8</td>
<td>13</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

: If the law in your area allows, you can use these units.
Dimensions

Models
HV-15KV-WP
HW-10KV-WP

Models
HV-60KV-WP
HW-60KV-WP
Models
HV-200KV-WP
HW-100KV-WP
HW-200KV-WP
19. Maintenance

- Refer to "4. Caution" for use.
- Refer to "6.1. Display and Symbols" and corresponding mode for displayed error code.
- Refer to "14. Calibration (Adjusting the Scale)" for precision weighing.
- Periodically check the accuracy of weighing. Calibrate the scale, if it is moved to another location or the environment has changed.

19.1. Check Points Before Calling Maintenance Service

<table>
<thead>
<tr>
<th>In this situation</th>
<th>Confirm these items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing displayed. Scale does not turn on.</td>
<td>□ Is the AC power cord properly connected?</td>
</tr>
<tr>
<td></td>
<td>□ Is the AC power the correct voltage?</td>
</tr>
<tr>
<td>The scale does not display zero at first.</td>
<td>□ Check around the weighing pan.</td>
</tr>
<tr>
<td></td>
<td>□ Is there anything on the weighing pan.</td>
</tr>
<tr>
<td></td>
<td>□ Perform zero point calibration.</td>
</tr>
<tr>
<td>- - - - - is displayed and does not proceed.</td>
<td>□ The weight value is unstable due to drift, vibration or other. A breeze or vibration may be affecting the measurement. Check around the weighing pan.</td>
</tr>
<tr>
<td></td>
<td>□ Check the connection of load cell cable.</td>
</tr>
<tr>
<td></td>
<td>□ No zero display when the display is turned on. Remove anything that is on the pan.</td>
</tr>
<tr>
<td></td>
<td>□ Perform zero point calibration.</td>
</tr>
<tr>
<td>[CAL E] is displayed</td>
<td>□ Calibration error that meaning "Too heavy".</td>
</tr>
<tr>
<td>[-CAL E] is displayed</td>
<td>□ Calibration error that meaning "Too light".</td>
</tr>
<tr>
<td>[E] is displayed</td>
<td>□ Weighing error that meaning "Over load".</td>
</tr>
<tr>
<td>[-E] is displayed</td>
<td>□ Weighing error that meaning "Under load".</td>
</tr>
<tr>
<td>Fixed display</td>
<td>□ Do you use the "hold function"?</td>
</tr>
<tr>
<td></td>
<td>□ Turn off scale and turn it on.</td>
</tr>
</tbody>
</table>

19.1.1. Repair

Do not disassemble/assemble the scale without an authorized service engineer. It may cause an electric shock or damage to the scale, etc. In this case, repair is not covered under warranty. Contact your local A&D dealer if your scale needs service or repair.