INSTRUCTION MANUAL
Basic Operation

1. INTRODUCTION ...3
 1-1 About This Manual .. 3
 1-2 Features ... 3
 1-3 Compliance ... 4

2. UNPACKING THE BALANCE5
 2-1 Unpacking ... 5
 2-2 Installing the Balance ... 6

3. PRECAUTIONS ...7
 3-1 Before Use .. 7
 3-2 During Use .. 7
 3-3 After Use ... 8
 3-4 Power Supply ... 8
 3-5 Display Symbols and Key Operation .. 9

4. WEIGHING UNITS ...10
 4-1 Units .. 10
 4-2 Storing Units ... 12

5. WEIGHING ..13
 5-1 Basic Operation (Gram Mode) ... 13
 5-2 Counting Mode (PCS) .. 14
 5-3 Percent Mode (%) ... 16
 5-4 Statistical Calculation Mode ... 17
 5-5 Statistical Calculation Mode (Example of Use) .. 21

Adapting to the Environment

6. RESPONSE ADJUSTMENT ...23

7. CALIBRATION ...24
 7-1 Calibration Mode .. 24
 7-2 Calibration Using the Internal mass (One-Touch Calibration, only for FZ-i series) 25
 7-3 Correcting the Internal Mass Value (Only for FZ-i series) ... 26
 7-4 Calibration Using an External Weight ... 27
 7-5 Calibration Test Using an External Weight ... 29

8. FUNCTION SWITCH AND INITIALIZATION ...31
 8-1 Permit or Inhibit .. 31
 8-2 Initializing the Balance ... 32

Functions

9. FUNCTION TABLE ..33
 9-1 Structure and Sequence of the Function Table .. 33
1. INTRODUCTION

This manual describes how the FZ-i / FX-i series balance works and how to get the most out of it in terms of performance.

Read this manual thoroughly before using the balance and keep it at hand for future reference.

1-1 About This Manual

This manual consists of the following five parts:

- Basic operation.............. Describes precautions on handling the balance, balance construction and basic balance operation.
- Adapting to the environment.... Describes response adjustment and calibration.
- Functions Describes various functions of the balance.
- RS-232C serial interface.......... Describes the interface which transmits data and controls the balance.
- Maintenance Describes maintenance, error codes, troubleshooting, specifications and options.

1-2 Features

- Compact general-purpose balance, can be installed almost anywhere.
- Casing construction, strong protection against dust and moisture.
- Stabilization time of one second. When [FAST] is selected for the response rate, a stabilization time of one second, to read a displayed value after a sample is placed on the pan, has been achieved.
- Multiple weighing units with most of the common units used around the world.
- Standard RS-232C serial interface to communicate with a computer and to output the Good Laboratory Practice (GLP) data.
- Statistical calculation mode to statistically calculate the weight data, and display or output the sum, maximum, minimum, range (maximum-minimum), average, standard deviation and coefficient of variation.
- Comparator Indicators, displaying the comparison results.
- Hold Function, provided for weighing a moving object such as an animal.
- Breeze break, provided for the FX-120i/200i/300i, for more accurate weighing.
- Underhook, provided for suspended weighing.
- As options, the USB interface (FXi-02), the Ethernet interface (FXi-08) and the built-in battery unit (FXi-09) are available.
1-3 Compliance

Compliance with FCC Rules

Please note that this device generates, uses and can radiate radio frequency energy. This device has been tested and has been found to comply with the limits of a Class A computing device pursuant to Subpart J of Part 15 of FCC rules. These rules are designed to provide reasonable protection against interference when this device is operated in a commercial environment. If this unit is operated in a residential area, it may cause some interference and under these circumstances the user would be required to take, at his own expense, whatever measures are necessary to eliminate the interference.

(FCC = Federal Communications Commission in the U.S.A.)

Compliance With EMC Directives

This device features radio interference suppression and safety regulation in compliance with the following Council Directives

Council directive 89/336/EEC EN61326 EMC directive
Council directive 73/23/EEC EN60950 Safety of Information Technology Equipment

The CE mark is an official mandatory European marking.

Please note that any electronic product must comply with local laws and regulations when sold or used anywhere outside Europe.
2. UNPACKING THE BALANCE

2-1 Unpacking

- The balance is a precision instrument. Unpack the balance carefully. Keep the packing material to be used for transporting the balance in the future.

- The packing contents depend on the balance model. See the illustrations to confirm that everything is contained.

How to assemble the breeze break (For the FZ-i series (all) and FX-120i/200i/300i)

Assemble the breeze break as shown below. Follow the numbered sequence.

Weighing pan
Pan support
Display
AC adapter jack
RS-232C serial interface
Main unit
AC adapter plug
Grounding terminal
Main unit rear side
AC adapter
AC adapter ID label
Leveling foot
Keys
Weighing pan
Pan support
Display
AC adapter jack
RS-232C serial interface
Main unit
AC adapter plug
Grounding terminal
Main unit rear side
AC adapter
AC adapter ID label
Leveling foot
Keys

Note
Please confirm that the AC adapter type is correct for your local voltage and receptacle type.
2-2 Installing the Balance

Install the balance as follows:

1. Place the balance on a solid weighing table. Refer to “3. PRECAUTIONS” for installing the balance.

2. The FZ-i series (all) and FX-120i /200i /300i
 Assemble the pan support, weighing pan and breeze break, on the balance as shown in the illustration on page 5.
 FX-1200i /2000i /3000i
 Assemble the pan support and weighing pan on the balance as shown in the illustration on page 5.

3. Adjust the leveling feet to level the balance. Confirm it using the bubble spirit level.

4. Confirm that the AC adapter type is correct for the local voltage and power receptacle type.

5. Connect the AC adapter to the balance. Warm up the balance for at least 30 minutes with nothing on the weighing pan.

Note

The AC adapter plug is protected against dust and may be difficult to insert. When inserting the plug, turn the plug while pushing on it.
To get the optimum performance from the balance and acquire accurate weight data, note the following:

3-1 Before Use

- Install the balance in an environment where the temperature and humidity are not excessive. The best operating temperature is about 20°C / 68°F at about 50% relative humidity.
- Install the balance where it is not exposed to direct sunlight and it is not affected by heaters or air conditioners.
- Install the balance where it is free of dust.
- Install the balance away from equipment which produces magnetic fields.
- Install the balance in a stable place avoiding vibration and shock. Corners of rooms on the first floor are best, as they are less prone to vibration.
- The weighing table should be solid and free from vibration, drafts and as level as possible.
- Level the balance by adjusting the leveling feet and confirm it using the bubble spirit level.
- Ensure a stable power source when using the AC adapter.
- Plug in the AC adapter and warm up the balance for at least 30 minutes.
- Calibrate the balance before use or after having moved it to another location.

Caution

Do not install the balance where flammable or corrosive gas is present.

3-2 During Use

- Discharge static electricity from the material to be weighed (hereinafter referred to as the sample). When a sample could have a static charge, the weight data is influenced. Ground the balance and try the following:
 - Eliminate static electricity using the optional AD-1683 DC static eliminator.
 - Try to keep the ambient humidity above 45%RH.
 - Use a metal shield case for a charged sample.
 - Wipe charged plastic samples with a moistened cloth.
This balance uses a strong magnet as part of the balance assembly, so please use caution when weighing magnetic materials such as iron. If there is a problem, use the underhook on the bottom of the balance to suspend the material away from the influence of the magnet.

Eliminate the temperature difference between a sample and the environment. When a sample is warmer (cooler) than the ambient temperature, the sample will be lighter (heavier) than the true weight. This error is due to a rising (falling) draft around the sample.

Make each weighing gently and quickly to avoid errors caused by the evaporation of moisture from the sample or the absorption of moisture by the sample.

Do not drop things upon the weighing pan, or place a sample on the pan that is beyond the balance weighing capacity. Place a sample in the center of the weighing pan.

Do not use a sharp instrument such as a pencil to press the keys. Use your finger only.

Press the RE-ZERO key before each weighing to eliminate possible errors.

Calibrate the balance periodically so as to eliminate possible errors.

Take into consideration the affect of air buoyancy on a sample when more accuracy is required.

Keep the balance interior free of dust and foreign materials.

The breeze break (The FZ-i series (all) and FX-120i /200i /300i (only)) is provided as an accessory. An anti-static treatment has been applied to the breeze break components, but they may be charged with static electricity when they are unpacked or when the humidity is low. If the weight value is unstable even when there are no drafts or the balance has a problem with repeatability, remove the breeze break. Or wipe the clear plates with a moistened cloth, use the optional AD-1683 DC static eliminator or apply an anti-static spray.

3-3 After Use

Avoid mechanical shock to the balance.

Do not disassemble the balance. Contact the local A&D dealer if the balance needs service or repair.

Do not use organic solvents to clean the balance. Clean the balance with a lint free cloth that is moistened with warm water and a mild detergent.

The edge of the weighing pan is sharp. Use much care when cleaning the pan.

Avoid dust and water so that the balance weighs correctly. Protect the internal parts from liquid spills and excessive dust.

3-4 Power Supply

When the AC adapter is connected, the balance is in the standby mode if the standby indicator is on (refer to “3-5 Display Symbols and Key Operation”). This is a normal state and does not harm the balance. For accurate weighing, warm up the balance for at least 30 minutes before use.
3-5 Display Symbols and Key Operation

Key operation

Key operation affects how the balance functions. The basic key operations are:

- "Press and release the key immediately" or "Press the key" = normal key operation during measurement
- "Press and hold the key"

Display symbols

- Number of statistical data (Statistical calculation mode)
- Displays the weight data relative to the weighing capacity, in percentage, in the weighing mode (Capacity indicator)

Display

<table>
<thead>
<tr>
<th>NET indicator</th>
<th>Processing indicator</th>
<th>Stabilization indicator</th>
<th>Standby indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Indicators</td>
<td>Animal mode indicator</td>
<td>Comparator indicators</td>
<td>Units</td>
</tr>
<tr>
<td>Interval output mode</td>
<td>standby indicator</td>
<td>Weight data</td>
<td></td>
</tr>
</tbody>
</table>

Each key, when pressed or when pressed and held, functions as follows:

<table>
<thead>
<tr>
<th>Key</th>
<th>When pressed</th>
<th>When pressed and held</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON/OFF</td>
<td>Turns the display on or off. The standby indicator is displayed when the display is turned off. The weighing mode is enabled when the display is turned on. This key is available anytime. Pressing the key during operation will interrupt the operation and turn the display off.</td>
<td></td>
</tr>
<tr>
<td>TIM SAMPLE</td>
<td>In the weighing mode, turns the minimum weighing value on or off. In the counting or percent mode, enters the sample storing mode.</td>
<td>Enters the function table mode. Refer to “9. FUNCTION TABLE”.</td>
</tr>
<tr>
<td>MODE</td>
<td>Switches the weighing units stored in the function table. Refer to “4. WEIGHING UNITS”.</td>
<td>Enters the response adjustment mode.</td>
</tr>
<tr>
<td>CAL</td>
<td>Cancels the operation when performing settings. With the FZ-i series, enters the calibration mode using the internal mass. (One-touch calibration)</td>
<td>Enters the calibration mode.</td>
</tr>
<tr>
<td>PRINT</td>
<td>Outputs the weight data to a printer or personal computer using the RS-232C serial interface, depending on the function table settings.</td>
<td>No function at the factory setting By changing the factory setting Outputs "Title block" and “End block” for GLP report.</td>
</tr>
<tr>
<td>PRE-ZERO</td>
<td>Sets the display to zero.</td>
<td></td>
</tr>
</tbody>
</table>
4. WEIGHING UNITS

4-1 Units

With the FZ-i/FX-i series balance, the following weighing units and weighing modes are available:

- g (grams)
- PCS (counting mode)
- % (percent mode)
- OZ (ounce)
- Lb (pound)
- L.OZ (pound/ounce)
- oz (ounce)
- Lb (pound)
- L.OZ (pound/ounce)
- % (percent mode)
- g (grams)
- PCS (counting mode)
- % (percent mode)
- oz (ounce)
- Lb (pound)
- L.OZ (pound/ounce)
- % (percent mode)
- g (grams)
- PCS (counting mode)
- % (percent mode)
- oz (ounce)
- Lb (pound)
- L.OZ (pound/ounce)

A unit or mode can be selected and stored in the function table as described on page 11. If a weighing mode (or unit of weight) has been turned off, that mode or unit will be missing in the sequence. Tael has four varieties, one of which can be selected and installed at the factory.

To select a unit or mode for weighing, press the MODE key.

For details about the units and modes, see the table below:

<table>
<thead>
<tr>
<th>Name (unit, mode)</th>
<th>Abbrev.</th>
<th>Display</th>
<th>Function table (Storing mode)</th>
<th>Conversion factor 1 g =</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram</td>
<td>G</td>
<td>g</td>
<td>g</td>
<td>1 g</td>
</tr>
<tr>
<td>Counting mode</td>
<td>Pcs</td>
<td>PCS</td>
<td>PCS</td>
<td></td>
</tr>
<tr>
<td>Percent mode</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Ounce (Avoir)</td>
<td>Oz</td>
<td>oz</td>
<td>oz</td>
<td>28.349523125 g</td>
</tr>
<tr>
<td>Pound</td>
<td>Lb</td>
<td>lb</td>
<td>lb</td>
<td>453.59237 g</td>
</tr>
<tr>
<td>Pound/Ounce</td>
<td>L.OZ</td>
<td>L.OZ</td>
<td>L.OZ</td>
<td>1Lb=16 oz, 1 oz=28.349523125 g</td>
</tr>
<tr>
<td>Troy Ounce</td>
<td>Ozt</td>
<td>ozt</td>
<td>ozt</td>
<td>31.1034768 g</td>
</tr>
<tr>
<td>Metric Carat</td>
<td>Ct</td>
<td>ct</td>
<td>ct</td>
<td>0.2 g</td>
</tr>
<tr>
<td>Momme</td>
<td>Mom</td>
<td>mom</td>
<td>mom</td>
<td>3.75 g</td>
</tr>
<tr>
<td>Pennyweight</td>
<td>Dwt</td>
<td>dwt</td>
<td>dwt</td>
<td>1.55517384 g</td>
</tr>
<tr>
<td>Grain (UK)</td>
<td>GN</td>
<td>GN</td>
<td>GN</td>
<td>0.06479891 g</td>
</tr>
<tr>
<td>Tael (HK general, Singapore)</td>
<td>TL</td>
<td>tl</td>
<td>tl</td>
<td>37.7994 g</td>
</tr>
<tr>
<td>Tael (HK jewelry)</td>
<td></td>
<td></td>
<td></td>
<td>37.429 g</td>
</tr>
<tr>
<td>Tael (Taiwan)</td>
<td></td>
<td></td>
<td></td>
<td>37.5 g</td>
</tr>
<tr>
<td>Tael (China)</td>
<td></td>
<td></td>
<td></td>
<td>31.25 g</td>
</tr>
<tr>
<td>Tola (India)</td>
<td>Tol</td>
<td>tol</td>
<td>tol</td>
<td>11.6638038 g</td>
</tr>
<tr>
<td>Messghal</td>
<td>Mes</td>
<td>mes</td>
<td>mes</td>
<td>4.6875 g</td>
</tr>
<tr>
<td>Programmable-unit (Multi-unit)</td>
<td>Mlt</td>
<td>MLT</td>
<td>MLT</td>
<td></td>
</tr>
</tbody>
</table>
The tables below indicate the weighing capacity and the minimum display for each unit, depending on the balance model.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Capacity</th>
<th>Minimum display</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FZ-120i</td>
<td></td>
</tr>
<tr>
<td>Gram</td>
<td>122.000</td>
<td></td>
</tr>
<tr>
<td>Ounce (Avoir)</td>
<td>43.0340</td>
<td></td>
</tr>
<tr>
<td>Pound</td>
<td>0.268965</td>
<td></td>
</tr>
<tr>
<td>Pound/Ounce</td>
<td>0L 4.30oz</td>
<td></td>
</tr>
<tr>
<td>Troy Ounce</td>
<td>3.92240</td>
<td></td>
</tr>
<tr>
<td>Metric Carat</td>
<td>610.000</td>
<td></td>
</tr>
<tr>
<td>Momme</td>
<td>32.2535</td>
<td></td>
</tr>
<tr>
<td>Pennyweight</td>
<td>78.621</td>
<td></td>
</tr>
<tr>
<td>Grain (UK)</td>
<td>1882.74</td>
<td></td>
</tr>
<tr>
<td>Tael (HK general, Singapore)</td>
<td>3.22755</td>
<td></td>
</tr>
<tr>
<td>Tael (HK jewelry)</td>
<td>3.25950</td>
<td></td>
</tr>
<tr>
<td>Tael (Taiwan)</td>
<td>3.25330</td>
<td></td>
</tr>
<tr>
<td>Tael (China)</td>
<td>3.90400</td>
<td></td>
</tr>
<tr>
<td>Tola (India)</td>
<td>10.4597</td>
<td></td>
</tr>
<tr>
<td>Messghal</td>
<td>26.0265</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Capacity</th>
<th>Minimum display</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FZ-120i</td>
<td></td>
</tr>
<tr>
<td>Gram</td>
<td>1220.00</td>
<td></td>
</tr>
<tr>
<td>Ounce (Avoir)</td>
<td>430.340</td>
<td></td>
</tr>
<tr>
<td>Pound</td>
<td>2.68965</td>
<td></td>
</tr>
<tr>
<td>Pound/Ounce</td>
<td>2L 11.03oz</td>
<td></td>
</tr>
<tr>
<td>Troy Ounce</td>
<td>39.2240</td>
<td></td>
</tr>
<tr>
<td>Metric Carat</td>
<td>6100.00</td>
<td></td>
</tr>
<tr>
<td>Momme</td>
<td>322.535</td>
<td></td>
</tr>
<tr>
<td>Pennyweight</td>
<td>786.21</td>
<td></td>
</tr>
<tr>
<td>Grain (UK)</td>
<td>18827.4</td>
<td></td>
</tr>
<tr>
<td>Tael (HK general, Singapore)</td>
<td>32.2755</td>
<td></td>
</tr>
<tr>
<td>Tael (HK jewelry)</td>
<td>32.5950</td>
<td></td>
</tr>
<tr>
<td>Tael (Taiwan)</td>
<td>32.5330</td>
<td></td>
</tr>
<tr>
<td>Tael (China)</td>
<td>39.0400</td>
<td></td>
</tr>
<tr>
<td>Tola (India)</td>
<td>104.597</td>
<td></td>
</tr>
<tr>
<td>Messghal</td>
<td>260.265</td>
<td></td>
</tr>
</tbody>
</table>
4-2 Storing Units

The units or modes can be selected and stored in the function table. The sequence of displaying the units or modes can be arranged in the function table so as to fit the frequency of use.

Select a unit or mode and arrange the sequence of display as follows:

1. Press and hold the SAMPLE key until \(\text{ba5fnc} \) of the function table is displayed.
2. Press the SAMPLE key several times to display \(\text{Un i\!c} \).
3. Press the PRINT key to enter the unit selection mode.
4. Specify a unit or mode in the order to be displayed using the following keys.
 - SAMPLE key: To sequentially display the units.
 - RE-ZERO key: To specify a unit or mode. The stabilization indicator appears when the displayed unit or mode is specified.
5. Press the PRINT key to store the units or modes. The balance displays \(\text{End} \) and then displays the next menu of the function table.
6. Press the CAL key to exit the function table. Then the balance returns to the weighing mode with the unit specified first in step 4.

Notes
When the power is turned on, the scale displays the unit specified first in step 4.

In the weighing mode, to select a unit or mode for weighing, press the MODE key.
5. WEIGHING

5-1 Basic Operation (Gram Mode)

1. Place a container on the weighing pan, if necessary. Press the **RE-ZERO** key to cancel the weight (tare). The balance displays **0.00 g**. (The decimal point position depends on the balance model.)

2. Place a sample on the pan or in the container.

3. Wait for the stabilization indicator to be displayed. Read the value.

While the stabilization indicator is on, pressing the **PRINT** key will output the weight value, using the RS-232C serial interface.

Note
Peripheral equipment, that is sold separately, such as a printer or a personal computer is required.

4. Remove the sample and container from the pan.

Notes
To use other units, press the **MODE** key and select an appropriate unit.
Press the **SAMPLE** key to turn on or off the minimum weighing value.

When the **ON:OFF** key is pressed with a container placed on the weighing pan, the balance displays **0.00 g** and weighing is started.
5-2 Counting Mode (PCS)

This is the mode to determine the number of objects in a sample based on the standard sample unit mass. Unit mass means the mass of one sample. The smaller the variables in each sample unit mass are, the more accurate the counting will be. The FX-i series balance is equipped with the Automatic Counting Accuracy Improvement (ACAI) function to improve the counting accuracy.

Note
If the sample unit mass variable is too large, it may cause a counting error.

Selecting the counting mode
1. Press the [MODE] key to select PCS (counting mode).

Storing a sample unit mass
2. Press the [SAMPLE] key to enter the sample unit mass storing mode.
 Even in the storing mode, pressing the [MODE] key will switch to the next mode.
3. To select the number of samples, press the [SAMPLE] key several times. It may be set to 5, 10, 25, 50 or 100.

Note
A greater number of samples will yield more accurate counting result.

4. Place a container on the weighing pan, if necessary. Press the [RE-ZERO] key to cancel the weight (tare). The number specified in step 3 appears.
 e.g.: [25 0] is displayed if 25 is selected in step 3.
5. Place the number of samples specified on the pan. In this example, 25 pieces.
6. Wait for the stabilization indicator to come on. Press the [PRINT] key to calculate and store the unit mass. The balance displays [25 PCS] (counting mode) and is set to count samples with this unit mass. (The sample unit mass stored, even if the AC adapter is removed, is maintained in non-volatile memory.)

 To improve the accuracy of the unit mass, proceed to step 8.

Notes
If the balance judges that the mass of the samples is too light and is not adequate to be used as the unit mass, it displays [LO]. In that case, store the mass by some quantity. For example, when the model with the minimum weighing value of 0.01 g is used and 10 pieces of samples weigh 0.05 g. Store 100 pieces of samples as 10 and multiply the weighing result by 10.
If the balance judges that the mass of the samples is too light to acquire accurate weighing, it displays an error requiring the addition of more samples to the specified number. In the example above, 50-PCS appears, requiring 25 more samples. Add 25 samples and press the PRINT key. When the unit mass is stored correctly, the balance proceeds to the counting mode.

Counting operation
7 Place the samples to be counted on the pan. While the stabilization indicator is on, pressing the PRINT key will output the weight value, using the RS-232C serial interface.

Note
Peripheral equipment, that is sold separately, such as a printer or a personal computer is required.

Counting mode using the ACAI function
The ACAI is a function that improves the accuracy of the unit mass automatically by increasing the number of samples and averaging the unit mass variable to minimize the weighing error, as the counting process proceeds.

8 If a few more samples are added, the processing indicator turns on. To prevent an error, add three or more. The processing indicator does not turn on if overloaded. Try to add the same number of samples as displayed.

9 The balance re-calculates the unit mass while the processing indicator is blinking. Do not touch the balance or samples on the pan until the processing indicator turns off.

10 Counting accuracy is improved when the processing indicator turns off. Each time the above operation is performed, a more accurate unit mass will be obtained. There is no definite upper limit of ACAI range for the number of samples exceeding 100. Try to add the same number of samples as displayed.

11 Remove all the samples used in ACAI and proceed with the counting operation using the improved unit mass.
5-3 Percent Mode (%)

This is the mode to display the weight value in percentage compared to a 100% reference mass and is used for target weighing or checking the sample variable.

Selecting the percent mode

1. Press the MODE key to select % (percent mode).

Storing the 100% reference mass

2. Press the SAMPLE key to enter the 100% reference mass storing mode.

 Even in the storing mode, pressing the MODE key will switch to the next mode.

3. Place a container on the weighing pan, if necessary. Press the RE-ZERO key to cancel the weight (tare). The balance displays 100.0 %.

4. Place the sample to be set as the 100% reference mass on the pan or in the container.

5. Press the PRINT key to store the reference mass. The balance displays 100.00 %. (The decimal point position depends on the reference value. The reference mass stored, even if the AC adapter is removed, is maintained in non-volatile memory.)

Note
If the balance judges that the mass of the sample is too light to be used as a reference, it displays Lo. Do not use the sample.

6. Remove the sample.

Reading the percentage

7. Place a sample to be compared to the reference mass on the pan. The displayed percentage is based on the 100% reference mass.

 While the stabilization indicator is on, pressing the PRINT key will output the weight value, using the RS-232C serial interface.

Note
Peripheral equipment, that is sold separately, such as a printer or a personal computer is required.
5-4 Statistical Calculation Mode

The statistical calculation mode statistically calculates the weight data, and displays or outputs the results. To use the statistical calculation mode, set the “Application function (APF)” parameter of “Application (AP Fnc)” in the function table to “2”, as described below.

Statistical items available are number of data, sum, maximum, minimum, range (maximum-minimum), average, standard deviation and coefficient of variation. What statistical items to output can be selected from the three modes in the function table.

- The wrong data input can be canceled by the key operation, if immediately after the input.
- Turning the balance off will delete the statistical data.
- The standard deviation and coefficient of variation are obtained by the equation below:

\[
\text{Standard deviation} = \sqrt{\frac{\sum (X_i - \bar{X})^2}{N(N-1)}} \quad \text{where } X_i \text{ is the i-th weight data, } \\
\text{N is number of data.}
\]

\[
\text{Coefficient of variation (CV)} = \frac{\text{Standard deviation}}{\text{Average}} \times 100 \%
\]

5-4-1 Getting Started

Switching to the Statistical Function Mode (Changing The Function Table)

1. Press and hold the [SAMPLE] key until "bAP Fnc" of the function table is displayed, then release the key.

2. Press the SAMPLE key several times to display "AP Fnc".

3. Press the PRINT key to display "APF 0".

4. Press the RE-ZERO key to display "APF 2".

To select statistical items to output, go to step 5.
To store the statistical function mode setting, go to step 7.
To disable the statistical calculation mode, press the RE-ZERO key to select "APF 0".
Selecting the statistical items to output

5 Press the SAMPLE key to display STAF 0.

6 Press the RE-ZERO key to select the output items.
In the example, STAF 1 is selected to output the number of data, sum, maximum, minimum, range (maximum-minimum) and average.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Number of data, sum</td>
</tr>
<tr>
<td>1</td>
<td>Number of data, sum, maximum, minimum, range</td>
</tr>
<tr>
<td>2</td>
<td>Number of data, sum, maximum, minimum, range</td>
</tr>
<tr>
<td></td>
<td>Standard deviation, coefficient of variation</td>
</tr>
</tbody>
</table>

7 Press the PRINT key to store the setting.

Note
The statistical calculation mode will be enabled using the ON:OFF key or when the power is turned on.

8 Press the CAL key to return to the weighing mode.

Selecting the unit

9 Press the MODE key to select the unit to be used for the statistical calculation mode.

Notes
Selecting the unit using the MODE key is not available after the data is entered. In this case, clear the data as described on page 20 and select the unit using the MODE key.

When the statistical calculation mode is to be enabled upon power-on, select the unit in “Unit (Un)" of the function table beforehand.

5-4-2 Using The Statistical Calculation Mode

Entering data for statistical calculation

Use the following keys to operate the statistical calculation mode.

MODE key When the data is entered, moves between the displaying items (weighing mode, statistical results and data operation) each time the key is pressed.

When no data has been entered, selects the unit.

SAMPLE key Turns the minimum display on or off, in the weighing mode.

RE-ZERO key Sets the display to zero in the weighing mode.

PRINT key Outputs the data number and the weight data and includes the weight data to statistical calculation in the weighing mode. (Output is not in the data format specified in the function table because of the data number added.)

Outputs the statistical results while the statistical results are displayed. (Output is not in the data format specified in the function table.)

CAL key Returns to the weighing mode.
1 Press the **RE-ZERO** key to set the display to zero.

2 Place the sample on the weighing pan and wait for the stabilization indicator to turn on.

3 Press the **PRINT** key to add the data displayed to statistical calculation. The number of data on the upper left of the display increases by 1.

4 Repeat steps 1 to 3 for each weighing.

Outputting the statistical results

5 Each time the **MODE** key is pressed, the display changes: the results as selected in “Statistical function mode output items (StatF)”, **CANCEL** and **CLEAR**.

Notes

When the number of data is 1, the standard deviation and coefficient of variation are displayed as - - - - - - -.

When the average is 0, the coefficient of variation is displayed as - - - - - - -.

Statistical items are indicated on the upper left of the display using the following symbols.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Statistical item</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM</td>
<td>Sum</td>
</tr>
<tr>
<td>MAX</td>
<td>Maximum</td>
</tr>
<tr>
<td>MIN</td>
<td>Minimum</td>
</tr>
<tr>
<td>R</td>
<td>Range (Maximum – minimum)</td>
</tr>
<tr>
<td>AVE</td>
<td>Average</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
</tbody>
</table>

6 While the results are displayed, press the **PRINT** key to output the results.
Deleting the latest data

When the wrong data is entered, it can be deleted and excluded from statistical calculation. Only the latest data can be deleted.

1. In the weighing mode, press the MODE key, and then press the SAMPLE key several times to display **CanCel**.

2. Press the PRINT key to display **Can no**.

3. Press the RE-ZERO key to display **Can Go**.

4. Press the PRINT key to delete the latest data and exclude it from statistical calculation. The number of data decreases by 1 when the balance returns to the weighing mode.

Clearing the statistical data

All the statistical data will be deleted and the number of data will be 0 (zero).

1. In the weighing mode, press the MODE key, and then press the SAMPLE key several times to display **CLEAR**.

2. Press the PRINT key to display **Clr no**.

3. Press the RE-ZERO key to display **Clr Go**.

4. Press the PRINT key to delete the statistical data. The number of data becomes 0 (zero) when the balance returns to the weighing mode.
5-5 Statistical Calculation Mode (Example of Use)

Here, as an example of use of the statistical calculation mode, mixing of the multiple formulae such as medicine is described. The mixing process is recorded using the balance and the printer. In the example, the FX-3000i and the AD-8121B (dump print mode) are connected using the RS-232C serial interface.

5-5-1 Getting Started

Changing the function table

Changes: ● To enable the statistical calculation mode
 ● To enable “Zero after output”

Enabling the statistical calculation mode

1. Enter the function table menu.
 Press and hold the SAMPLE key until bASFnc of the function table is displayed, then release the key.

2. Select the application function.
 Press the SAMPLE key several times to display RPF Func. Then, press the PRINT key to display °RPF 0.

3. Change the application function parameter to “2”.
 Press the RE-ZERO key to display RPF 2. Press the PRINT key to confirm the change. After End, bASFnc is displayed.

Enabling “Zero after output”

4. Select “Zero after output”.
 Press the SAMPLE key several times to display dout. Then, press the PRINT key to display °Prt 0 and press the SAMPLE key several times to display °Ar-d 0.

5. Enable “Zero after output”.
 Press the RE-ZERO key to display Ar-d 1. Then, press the PRINT key to confirm the change. After End, SsF is displayed.

Returning to the weighing mode

6. Press the CAL key to return to the weighing mode.
5-5-2 Using The Statistical Calculation Mode

1. Press the **RE-ZERO** key to set the display to zero.

2. Place a container on the weighing pan. Press the **PRINT** key to cancel the weight (tare). The balance displays **0.00 g** (Storing the tare value) The tare value data is output when the peripheral output equipment is connected.

3. Weigh formula 1 and press the **PRINT** key. The balance displays **0.00 g** (Storing the weight value of formula 1) The weight value data is output when the peripheral output equipment is connected.

4. Weigh formula 2 and press the **PRINT** key. The balance displays **0.00 g** (Storing the weight value of formula 2) The weight value data is output when the peripheral output equipment is connected.

5. When there are some more formulae to be added, repeat step 4.

6. After mixing is complete, press the **MODE** key to display the statistical results.

7. Press the **PRINT** key to output the number of data saved including the tare value and the total weight.

Output example

<table>
<thead>
<tr>
<th>No.</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ST,+00005.63 g</td>
<td>Tare value</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ST,+00001.99 g</td>
<td>Formula 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ST,+00007.78 g</td>
<td>Formula 2</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>SUM</td>
<td>15.40 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total weight</td>
</tr>
</tbody>
</table>
6. RESPONSE ADJUSTMENT

This function stabilizes the weight value, reducing the influence on weighing that is caused by drafts and vibration at the place where the balance is installed.

The function has three stages as follows and can be changed by simple key operation.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST</td>
<td>Fast response, but prone to drafts and vibration. Good for target weighing.</td>
</tr>
<tr>
<td>MID.</td>
<td>Slow response, but strong against drafts and vibration Good for weighing which requires a stable display.</td>
</tr>
</tbody>
</table>

Operation

1. Press and hold the **MODE** key until **RESPONSE** is displayed. And then, release the key.
2. Press the **MODE** key to select a rate of the response adjustment. Either **FAST**, **MID.** or **SLOW** can be selected.
3. After a few seconds of inactivity, or when the **PRINT** key is pressed, the balance displays **End**. Then, it returns to the weighing mode and displays the updated response indicator. The response indicator remains displayed for a while.

Note

Setting the response rate automatically changes the “Condition (Cond)” and “Display refresh rate (Spd)” parameters of “Environment, Display (bASFnc)” in the function table, as shown below:

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Cond</th>
<th>Spd</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MID.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SLOW</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

When the balance is to be used with other setting combinations, set each parameter in the function table.
7. CALIBRATION

7-1 Calibration Mode

The FX-\(i\) series balance has the following two modes.
- Calibration using the internal mass (One-touch calibration, only for the FZ-\(i\) series)
- Calibration using an external weight
- Calibration test using an external weight (Calibration test does not perform calibration.)

Terms

The following terms are defined as follows:
- External weight = A weight that you have. Referred to as a calibration weight when used for calibration.
- Calibration weight = A weight used for calibration
- Target weight = An external weight used for calibration test

Caution

- Calibration adjusts the balance for accurate weighing.
 Besides periodic calibration and before each use, perform calibration when:
 - The balance is installed for the first time.
 - The balance has been moved.
 - The ambient environment has changed.
- Do not allow vibration or drafts to affect the balance during calibration.
- To output the data for GLP using the RS-232C serial interface, set “GLP output (\(\text{info}\))” of “Data output (\(\text{dout}\))”. For details, refer to “9. FUNCTION TABLE”.
- Calibration test is available only when “GLP output (\(\text{info}\))” of “Data output (\(\text{dout}\))” is set to “1” or “2”.
- When calibrating, use the accessory small break breeze. (Models: FZ-\(i\) series (all) and FX-120\(i\)/200\(i\)/300\(i\))

Caution on using an external weight

- The accuracy of an external weight will influence the accuracy of weighing. Select an appropriate weight as listed below:

<table>
<thead>
<tr>
<th>Model</th>
<th>Usable calibration weight</th>
<th>Adjustable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX-120(i)</td>
<td>100 g, 50 g</td>
<td>-0.050 g to +0.050 g</td>
</tr>
<tr>
<td>FX-200(i)</td>
<td>200 g, 100 g</td>
<td>-0.50 g to +0.50 g</td>
</tr>
<tr>
<td>FX-300(i)</td>
<td>300 g, 200 g, 100 g</td>
<td></td>
</tr>
<tr>
<td>FX-1200(i)</td>
<td>1000 g, 500 g</td>
<td></td>
</tr>
<tr>
<td>FX-2000(i)</td>
<td>2000 g, 1000 g</td>
<td></td>
</tr>
<tr>
<td>FX-3000(i)</td>
<td>3000 g, 2000 g, 1000 g</td>
<td></td>
</tr>
</tbody>
</table>

The calibration weight in bold type: factory setting

The calibration weight value can be adjusted within the range above.

Display

- This indicator means “the balance is measuring calibration data”. Do not allow vibration or drafts to affect the balance while this indicator is displayed.
7-2 Calibration Using the Internal mass (One-Touch Calibration, only for FZ-i series)

This function calibrates the balance using the internal mass. The only operation required is to press the **CAL** key.

Operation

1. Connect the AC adapter and warm up the balance for at least 30 minutes with nothing on the weighing pan.
2. After carefully installing the small breeze break, press the **CAL** key.
3. The balance displays **Calin** and performs calibration using the internal mass. Do not allow vibration or drafts to affect the balance.
4. The balance displays **End** after calibration. If the “GLP output (inf0)” parameter of the function table is set to “1” or “2”, the balance displays **GLP** and outputs “Calibration Report” using the RS-232C interface or stores the data in memory. For details on the calibration report format, refer to “10-2 GLP Report”.
5. The balance will automatically return to the weighing mode after calibration.

About the internal mass

The mass of the internal mass may change due to corrosion or other damage caused by the operating environment, or due to aging. Check the internal mass periodically. Correct the internal mass value as necessary. For details, refer to “7-3 Correcting the internal mass value”.

To maintain the weighing accuracy, perform the calibration using an external weight periodically, as described below.
7-3 Correcting the Internal Mass Value (Only for FZ-i series)

The FZ-i series balance can correct the internal mass value by basing on an external weight. The corrected mass value is maintained in non-volatile memory even if the AC adapter is removed. (The FX-i series balance does not have the internal mass value correction function.)

Select an appropriate weight as listed below:

<table>
<thead>
<tr>
<th>Model</th>
<th>Usable calibration weight</th>
<th>Adjustable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>FZ-120i</td>
<td>100 g, 50 g</td>
<td>-0.050 g to +0.050 g</td>
</tr>
<tr>
<td>FZ-200i</td>
<td>200 g, 100 g, 50 g</td>
<td></td>
</tr>
<tr>
<td>FZ-300i</td>
<td>300 g, 200 g, 100 g, 50 g</td>
<td></td>
</tr>
<tr>
<td>FZ-1200i</td>
<td>1000 g, 500 g</td>
<td>-0.50 g to +0.50 g</td>
</tr>
<tr>
<td>FZ-2000i</td>
<td>2000 g, 1000 g, 500 g</td>
<td></td>
</tr>
<tr>
<td>FZ-3000i</td>
<td>3000 g, 2000 g, 1000 g, 500 g</td>
<td></td>
</tr>
</tbody>
</table>

The calibration weight in bold type: factory setting

The calibration weight value can be adjusted within the range above.

Operation

1. With factory setting, the balance cannot correct the internal mass value. Refer to “8. FUNCTION SWITCH AND INITIALIZATION” and set the function and the internal mass value correction function.

2. With the weighing mode, press and hold the SAMPLE key to display **bR5Fnc**.

3. Press the SAMPLE key several times until **CALSEE** is displayed. If **CALSEE** is not displayed, perform the step 1.

4. Press the PRINT key to display **CAL 0**. Refer to “7-4 Calibration Using an External Weight”, to perform the calibration.

5. After calibration, the balance displays **rEAdy**. After placing the small break breeze on the balance, press the PRINT key.

6. The balance corrects the internal mass value automatically after displaying **CALSEE**.

7. After correcting the internal mass value, the balance displays **CAL in** and performs the calibration automatically using the corrected internal mass value.

8. The balance displays **bR5Fnc** after displaying **End**.

9. Press the CAL key to return the weighing mode. Confirm that the internal mass value has been corrected properly by placing the mass used to perform the correction, on the weighing pan. If the internal mass value has not been corrected properly, repeat the procedure, starting at step 2 and adjust the correction value.
7-4 Calibration Using an External Weight

This function calibrates the balance using an external weight.

Operation

1. Connect the AC adapter and warm up the balance for at least 30 minutes with nothing on the pan.

2. Press and hold the **CAL** key until **CAL in** is displayed, and then release the key.

3. The balance displays **CAL 0**.
 - If you want to change the calibration weight (a list of usable weights is shown on page 24), press the **SAMPLE** key and proceed to step 4.
 - If you use the calibration weight value stored in the balance, proceed to step 5.

4. Specify the calibration weight value as follows:
 - **SAMPLE** key: To switch the display condition to: “All of the segments blinking” (calibration weight selection mode) or “The last two digits blinking” (value adjustment mode).
 - **RE-ZERO** key (To increase the value)
 - **MODE** key (To decrease the value)
 - **PRINT** key: To store the new weight value. Even if the AC adapter is removed, the data is maintained in non-volatile memory.
 - **CAL** key: To cancel the operation and return to **CAL 0**.

Example:
- Select a weight
 - 1000.12 g

Press and hold the **CAL** key until **CAL out** is displayed, and then release the key.

Release the key.
5 Confirm that there is nothing on the pan and press the [PRINT] key. The balance measures the zero point. Do not allow vibration or drafts to affect the balance.

The balance displays the calibration weight value.

6 Place the displayed calibration weight on the pan and press the [PRINT] key. The balance measures the calibration weight. Do not allow vibration or drafts to affect the balance.

7 The balance displays [End]. Remove the weight from the pan.

8 When the GLP output is set, the balance displays [GLP] and outputs “Calibration Report”.

9 The balance will automatically return to the weighing mode.

10 Place the calibration weight on the pan and confirm that the value displayed is within ±2 digits of the specified value. If it is not within the range, check the ambient conditions such as breeze and vibration, also check the weighing pan. Then, repeat steps 1 to 9.
7-5 Calibration Test Using an External Weight

This function tests the balance weighing accuracy using an external weight and outputs the result. This is available only when the "GLP output (\(m^F_o\))" parameter is set to "1" or "2". (Calibration test does not perform calibration.)

Operation

1. Connect the AC adapter and warm up the balance for at least 30 minutes with nothing on the pan.
2. Press and hold the **CAL** key until **CC out** is displayed, and then release the key.
3. The balance displays **CC 0**.
 - If you want to change the target weight (a list of usable weights is shown on page 24), press the **SAMPLE** key and proceed to step 4.
 - If you use the target weight value stored in the balance, proceed to step 5.
4. Specify the target weight value as follows:
 - **SAMPLE** key: To switch the display condition to: "All of the segments blinking" (target weight selection mode) or "The last two digits blinking" (value adjustment mode).
 - **RE-ZERO** key (To increase the value)
 - **MODE** key (To decrease the value)
 - To select the target weight or adjust the value.
 - **PRINT** key: To store the new weight value. Even if the AC adapter is removed, the data is maintained in non-volatile memory.
 - **CAL** key: To cancel the operation and return to **CC 0**.

To next page
5 Confirm that there is nothing on the pan and press the PRINT key. The balance measures the zero point and displays the measured value. Do not allow vibration or drafts to affect the balance. The balance displays the target weight value.

6 Place the displayed target weight on the pan and press the PRINT key. The balance measures the target weight and displays the measured value. Do not allow vibration or drafts to affect the balance.

7 The balance displays \textbf{End}. Remove the weight from the pan.

8 When the GLP output is set, the balance displays \textbf{GLP} and outputs “Calibration Test Report”.

9 The balance will automatically return to the weighing mode.
8. FUNCTION SWITCH AND INITIALIZATION

8-1 Permit or Inhibit

The balance stores parameters that must not be changed unintentionally. There are two switches for the purpose of protecting these parameters. Each switch can select either “permit” or “inhibit”. The "inhibit" protects parameters against unintentional operations.

Switches (FZ-i series)

\[R - 00111 \]

(The display shown left indicates the factory settings.)

- Function table
 - \(\varnothing \) To inhibit changes to the function table
 - \(\checkmark \) To permit changes to the function table

- Calibration using the internal mass (One-touch calibration)
 - \(\varnothing \) To inhibit calibration using the internal mass
 - \(\checkmark \) To permit calibration using the internal mass

- Calibration using an external weight
 - \(\varnothing \) To inhibit calibration using an external weight
 - \(\checkmark \) To permit calibration using an external weight

- Not used

Switches (FX-i series)

\[R - 00101 \]

(The display shown left indicates the factory settings.)

- Function table
 - \(\varnothing \) To inhibit changes to the function table
 - \(\checkmark \) To permit changes to the function table

- Not used

- Calibration using an external weight
 - \(\varnothing \) To inhibit calibration using an external weight
 - \(\checkmark \) To permit calibration using an external weight

- Not used

- Not used
Operation

1 Press the ON:OFF key to turn off the display.

2 While pressing and holding the PRINT key and the SAMPLE key, press the ON:OFF key. The balance displays P5.

3 Press the PRINT key. Then the balance displays the function switches.

4 Set the switches using the following keys.
 - SAMPLE key: To select the switch to change the parameter.
 - RE-ZERO key: To change the parameter of the switch selected.
 - 0: To inhibit changes. 1: To permit changes.
 - PRINT key: To store the new parameter and return to the weighing mode.
 - CAL key: To cancel the operation (CLR is displayed.) To return to the weighing mode, press the CAL key once again.

8-2 Initializing the Balance

This function returns the following parameters to factory settings.

- Calibration data
- Function table
- The sample unit mass value (counting mode), 100% reference mass value (percent mode)
- External calibration weight
- Function switch settings
- Statistical data
- Internal mass value (Only for FZ-i series)

Note

Be sure to calibrate the balance after initialization.

Operation

1 Press the ON:OFF key to turn off the display.

2 While pressing and holding the PRINT key and the SAMPLE key, press the ON:OFF key. The balance displays P5.

3 Press the SAMPLE key to display CLR.

4 Press the PRINT key. To cancel this operation, press the CAL key.

5 Press the RE-ZERO key.

6 Press the PRINT key to initialize the balance. The balance will automatically return to the weighing mode.
9. FUNCTION TABLE

The function table reads or rewrites the parameters that are stored in the balance. These parameters stored, even if the AC adapter is removed, are maintained in non-volatile memory.

9-1 Structure and Sequence of the Function Table

The function table menu consists of two layers. The first layer is the “Class” and the second layer is the “Item”. Each item stores a parameter.

Example
This example sets “Auto print mode A” for “Data output mode” and “100 digits” for “Auto print difference”.

9-2 Display and Keys

<table>
<thead>
<tr>
<th>Display/Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“o”</td>
<td>The symbol “o” indicates that the parameter displayed is in effect.</td>
</tr>
<tr>
<td>“1/0Ω SAMPLE”</td>
<td>When pressed and held in the weighing mode, enters the function table mode. Selects the class or item in the function table mode.</td>
</tr>
<tr>
<td>“RE-ZERO”</td>
<td>Changes the parameter.</td>
</tr>
<tr>
<td>“PRINT”</td>
<td>When a class is displayed, moves to an item in the class. When an item is displayed, stores the new parameter and displays the next class.</td>
</tr>
<tr>
<td>“CAL”</td>
<td>When an item is displayed, cancels the new parameter and displays the next class. When a class is displayed, exits the function table mode and returns to the weighing mode.</td>
</tr>
</tbody>
</table>
9-3 Details of the Function Table

<table>
<thead>
<tr>
<th>Class</th>
<th>Item and Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond</td>
<td>Fast response, sensitive value FAST</td>
<td>With "Hold 1", sets the averaging time.</td>
</tr>
<tr>
<td>Condition</td>
<td>Slow response, stable value SLOW</td>
<td>The stabilization indicator illuminates when the display fluctuation is within the range. With "Hold 1", sets the stabilization range.</td>
</tr>
<tr>
<td>St-b</td>
<td>Stable range is ±1 digit</td>
<td></td>
</tr>
<tr>
<td>Stability band width</td>
<td>Stable range is ±3 digits</td>
<td></td>
</tr>
<tr>
<td>Hold</td>
<td>OFF</td>
<td>Holds the display when stable in animal mode. With "Hold 1", ANIMAL turns on.</td>
</tr>
<tr>
<td>Hold function</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>trc</td>
<td>OFF</td>
<td>Keeps zero display by tracking zero drift.</td>
</tr>
<tr>
<td>Zero tracking</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very strong</td>
<td></td>
</tr>
<tr>
<td>Spd</td>
<td>5 times/second</td>
<td>Period to refresh the display</td>
</tr>
<tr>
<td>Display refresh rate</td>
<td>10 times/second</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 times/second</td>
<td></td>
</tr>
<tr>
<td>Pnt</td>
<td>Point (.)</td>
<td>Decimal point format</td>
</tr>
<tr>
<td>Decimal point</td>
<td>Comma (,)</td>
<td></td>
</tr>
<tr>
<td>P-on</td>
<td>OFF</td>
<td>Turns on the weighing mode display when the AC adapter is connected.</td>
</tr>
<tr>
<td>Auto display-ON</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>P-off</td>
<td>OFF</td>
<td>Turns off the display after 10 minutes of inactivity.</td>
</tr>
<tr>
<td>Auto display-OFF</td>
<td>ON (10 minutes)</td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td>Displays</td>
<td>Select whether or not to display the minimum weighing value at weighing start.</td>
</tr>
<tr>
<td>Display at start</td>
<td>Does not display</td>
<td></td>
</tr>
<tr>
<td>beep</td>
<td>Does not sound</td>
<td>Select whether or not to sound the beep when operating on keys.</td>
</tr>
<tr>
<td>Beep</td>
<td>Sounds</td>
<td></td>
</tr>
<tr>
<td>Cl Add *</td>
<td>Refer to "9-9 Clock and calendar function".</td>
<td>Confirms and sets the time and date. The time and date are added to output data.</td>
</tr>
<tr>
<td>Clock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP Func Comparator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP Comparator mode</td>
<td>No comparison</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparison, excluding "near zero" when stable value or overloaded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparison, including "near zero" when stable value or overloaded</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continuous comparison, excluding "near zero"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continuous comparison, including "near zero"</td>
<td></td>
</tr>
<tr>
<td>beep-</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>LO buzzer</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>beep-</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>OK buzzer</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>beep+</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>HI buzzer</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

* Factory settings. Digit is a unit of minimum weighing value
 * : Only for the FZ-i series
<table>
<thead>
<tr>
<th>Class</th>
<th>Item and Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp H</td>
<td>Upper limit</td>
<td>Refer to “9-10 Comparator Function”.</td>
</tr>
<tr>
<td>Cp L</td>
<td>Lower limit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_{rt}</th>
<th>Data output mode</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Key mode</td>
<td>Accepts the PRINT key only when the display is stable.</td>
</tr>
<tr>
<td>1</td>
<td>Auto print mode A (Reference = zero)</td>
<td>Outputs data when the display is stable and conditions of $p_{p} p$, $p_{p} b$ and the reference value are met.</td>
</tr>
<tr>
<td>2</td>
<td>Auto print mode B (Reference = last stable value)</td>
<td>Outputs data continuously.</td>
</tr>
<tr>
<td>3</td>
<td>Stream mode</td>
<td>Accepts the PRINT key regardless of the display condition.</td>
</tr>
<tr>
<td>4</td>
<td>Key mode B (Immediately)</td>
<td>Accepts the PRINT key immediately when the display is stable, or waits for the display to be stable when not.</td>
</tr>
<tr>
<td>5</td>
<td>Key mode C (When stable)</td>
<td>Uses interval output mode.</td>
</tr>
<tr>
<td>6</td>
<td>Interval output mode</td>
<td>Uses interval output mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_{p}</th>
<th>Auto print polarity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Plus only</td>
<td>Displayed value > Reference</td>
</tr>
<tr>
<td>1</td>
<td>Minus only</td>
<td>Displayed value < Reference</td>
</tr>
<tr>
<td>2</td>
<td>Both</td>
<td>Regardless of displayed value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_{b}</th>
<th>Auto print difference</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10 digits</td>
<td>Difference between reference value and displayed value</td>
</tr>
<tr>
<td>1</td>
<td>100 digits</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1000 digits</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>int</th>
<th>Interval time</th>
<th>Interval time for the interval output mode (With $p_{rt} 6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Every measurement</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 seconds</td>
<td>Interval time for the interval output mode (With $p_{rt} 6$)</td>
</tr>
<tr>
<td>2</td>
<td>5 seconds</td>
<td>Interval time for the interval output mode (With $p_{rt} 6$)</td>
</tr>
<tr>
<td>3</td>
<td>10 seconds</td>
<td>Interval time for the interval output mode (With $p_{rt} 6$)</td>
</tr>
<tr>
<td>4</td>
<td>30 seconds</td>
<td>Interval time for the interval output mode (With $p_{rt} 6$)</td>
</tr>
<tr>
<td>5</td>
<td>1 minute</td>
<td>Interval time for the interval output mode (With $p_{rt} 6$)</td>
</tr>
<tr>
<td>6</td>
<td>2 minute</td>
<td>Interval time for the interval output mode (With $p_{rt} 6$)</td>
</tr>
<tr>
<td>7</td>
<td>5 minute</td>
<td>Interval time for the interval output mode (With $p_{rt} 6$)</td>
</tr>
<tr>
<td>8</td>
<td>10 minute</td>
<td>Interval time for the interval output mode (With $p_{rt} 6$)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pUSE</th>
<th>Data output pause</th>
<th>Selects the data output interval.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No pause</td>
<td>Selects the data output interval.</td>
</tr>
<tr>
<td>1</td>
<td>Pause (1.6 seconds)</td>
<td>Selects the data output interval.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$R L - F$</th>
<th>Auto feed</th>
<th>Selects whether or not automatic feed is performed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not used</td>
<td>Selects whether or not automatic feed is performed.</td>
</tr>
<tr>
<td>1</td>
<td>Used</td>
<td>Selects whether or not automatic feed is performed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>inf_O</th>
<th>GLP output</th>
<th>Selects GLP output method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No output</td>
<td>Selects GLP output method.</td>
</tr>
<tr>
<td>1</td>
<td>AD-8121 format</td>
<td>Selects GLP output method.</td>
</tr>
<tr>
<td>2</td>
<td>General data format</td>
<td>Selects GLP output method.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$R r - d$</th>
<th>Zero after output</th>
<th>Adjusts zero automatically after data is output.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No used</td>
<td>Adjusts zero automatically after data is output.</td>
</tr>
<tr>
<td>1</td>
<td>Used</td>
<td>Adjusts zero automatically after data is output.</td>
</tr>
</tbody>
</table>

- Factory settings. Digit is a unit of minimum weighing value.
<table>
<thead>
<tr>
<th>Class</th>
<th>Item and Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bPS</td>
<td>Baud rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 600 bps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1200 bps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 2400 bps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 4800 bps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 9600 bps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 19200 bps</td>
</tr>
<tr>
<td></td>
<td>btPr</td>
<td>Data bit, parity bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 7 bits, even</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 7 bits, odd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 8 bits, none</td>
</tr>
<tr>
<td></td>
<td>CrLF</td>
<td>Terminator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 CR LF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 CR</td>
</tr>
<tr>
<td></td>
<td>TYPE</td>
<td>Data format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 A&D standard format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 DP format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 KF format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 MT format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 NU format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 CSV format</td>
</tr>
<tr>
<td></td>
<td>t-UP</td>
<td>Timeout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 No limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1 second</td>
</tr>
<tr>
<td></td>
<td>ErrCd</td>
<td>AK, Error code</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 No output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Output</td>
</tr>
<tr>
<td></td>
<td>nLt</td>
<td>Programmable-unit (Multi-unit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sets an arbitrary coefficient.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only when programmable-unit mode is selected.</td>
</tr>
<tr>
<td></td>
<td>Un x</td>
<td>Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to "4. WEIGHING UNITS".</td>
</tr>
<tr>
<td></td>
<td>id</td>
<td>ID number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to "10. ID NUMBER AND GLP REPORT"</td>
</tr>
<tr>
<td></td>
<td>RPF</td>
<td>Application function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Normal weighing mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Capacity indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Statistical calculation mode</td>
</tr>
<tr>
<td></td>
<td>SxRF</td>
<td>Statistical function mode output items</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 Number of data, sum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Number of data, sum, maximum, minimum, average, range (maximum-minimum)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Number of data, sum, maximum, minimum, average, range (maximum-minimum), standard deviation, coefficient of variation</td>
</tr>
<tr>
<td></td>
<td>CR LS*</td>
<td>Internal mass value correction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer to "7. CALIBRATION".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displayed only when the internal mass value correction switch is set to i</td>
</tr>
</tbody>
</table>

Caution

The balance may not transmit the data completely at the specified refresh rate, depending on the baud rate. When a refresh rate of 20 times/second is used, set the baud rate to 4800 bps or higher.
9-4 Description of the Class “Environment, Display”

Condition (Cond)

| Cond 0 | This parameter is for sensitive response to the fluctuation of a weight value. Used for powder target weighing, weighing a very light sample or when quick response weighing is required. After setting, the balance displays **FAST**. |
| Cond 2 | This parameter is for stable weighing with slow response. Used to prevent a weight value from drifting due to vibration or drafts. After setting, the balance displays **SLOW**. |

Note

With “Hold function (Hold)” set to “ON (1)”, this item is used to set the averaging time.

Stability band width (5t-b)

This item controls the width to regard a weight value as a stable value. When the fluctuation per second is less than the parameter, the balance displays the stabilization indicator and outputs the data. The parameter influences the “Auto print mode”

| 5t-b 0 | This parameter is for sensitive response of the stabilization indicator. Used for exact weighing. |
| 5t-b 2 | This parameter ignores slight fluctuation of a weight value. Used to prevent a weight value from drifting due to vibration or drafts. |

Note

With “Hold function (Hold)” set to “ON (1)”, this item is used to set the stabilization range.

Hold function (Hold) (Animal weighing mode)

This function is used to weigh a moving object such as an animal. When the weight data is over the weighing range from zero and the display fluctuation is within the stabilization range for a fixed period of averaging time, the processing indicator illuminates and the balance displays the average weight of the animal. When the animal is removed from the weighing pan, the display returns to zero automatically.

This function is available only when the hold function parameter is set to “1” (the animal mode indicator **ANIMAL** illuminates) and any weighing unit other than the counting mode is selected.

The stabilization range and averaging time are set in “Condition (Cond)” and “Stability band width (5t-b)”.

<table>
<thead>
<tr>
<th>Weighing range</th>
<th>Averaging time</th>
<th>Stabilization range</th>
</tr>
</thead>
<tbody>
<tr>
<td>FZ-120 i/200 i /300 i</td>
<td>0.200 g or over</td>
<td>Cond 0 2 seconds Faster 5t-b 0 Lesser</td>
</tr>
<tr>
<td>FX-120 i/200 i /300 i</td>
<td>2.00 g or over</td>
<td>Cond 1 4 seconds</td>
</tr>
<tr>
<td>FZ-1200 i/2000 i /3000 i</td>
<td>2 seconds</td>
<td>5t-b 2 8 seconds More accurate</td>
</tr>
</tbody>
</table>
Zero tracking (\textit{trc})

This function tracks zero point drift caused by changes in the environment and stabilizes the zero point. When the weight data is only a few digits, turn the function off for accurate weighing.

\textbf{Note}

Digit, when used for the FX-i series balance, indicates a unit of minimum weighing value.

- \textit{trc 0}: The tracking function is not used. Used for weighing a very light sample.
- \textit{trc 1}: The tracking function is used. Normal zero tracking.
- \textit{trc 2}: The tracking function is used. Strong zero tracking.
- \textit{trc 3}: The tracking function is used. Very strong zero tracking.

Display refresh rate (\textit{5pd})

Period to refresh the display. This parameter influences “Stream mode” along with “Baud rate” and “Data output pause”

\textbf{Note}

This item is selected automatically when the response rate is changed.

Decimal point (\textit{pnt})

The decimal point format can be selected.

Auto display-ON (\textit{p-on})

When the AC adapter is connected, the display is automatically turned on in the weighing mode, without the \textbf{ON:OFF} key operation. Used when the balance is built into an automated system. 30-minute warm up is necessary for accurate weighing.

Auto display-OFF (\textit{poff})

When the AC adapter is connected and no operation is performed (inactivity state) for 10 minutes, the display is automatically turned off and the standby indicator is illuminated.
9-5 Description of the Item “Data Output Mode”

The parameter setting of the “Data output mode (Pr migraine)” applies to the performance when the data is transmitted using the RS-232C serial interface.

Key mode
When the PRINT key is pressed with the stabilization indicator turned on, the balance outputs the weight data and the display blinks one time.

Required setting: dout P r t 0

Auto print modes A and B
When the displayed value is stable and the conditions of “Auto print polarity”, “Auto print difference” and reference value are met, the balance outputs the weight data.

When the PRINT key is pressed with the stabilization indicator turned on, the balance outputs the data and the display blinks one time.

Mode A: Required setting
- dout P r t 1 Auto print mode A (reference = zero)
- dout R P - P Auto print polarity
- dout R P - b Auto print difference

Example
“For outputting the weight value each time a sample is added, with “Rr - d” set to “1” (to adjust zero after the data is output).”

Mode B: Required setting
- dout P r t 2 Auto print mode B (reference = last stable value)
- dout R P - P Auto print polarity
- dout R P - b Auto print difference

Example
“For outputting the weight value while a sample is added.”

Stream mode
The balance outputs the weight data continuously regardless of the display condition. The display does not blink in this mode.

Required setting: dout P r t 3
- bR5Fnc S P d Display refresh rate
- S iF bP5 Baud rate

Example
“For monitoring data on a computer”

Caution
The balance may not transmit the data completely at the specified refresh rate and baud rate. Set the baud rate higher.

Key mode B
When the PRINT key is pressed, the balance outputs the weight data, regardless of the display condition. The display does not blink in this mode.

Key mode C
When the PRINT key is pressed with the stabilization indicator turned on, the balance outputs the weight data. When the stabilization indicator is not on, the balance waits for the indicator to turn on and outputs the data. The balance blinks one time in this mode.
Interval output mode
The weight data is periodically output. When the PRINT key is pressed, the balance starts to output the weight data at a preset interval time. When the PRINT key is pressed again, the balance stops outputting the weight data.

Required setting
\[\text{dout} \quad \text{Prt} \quad \text{int} \]

Example
"For outputting the weight data periodically."

Caution
The balance may not transmit the data completely at the specified interval times and baud rate. Set the baud rate higher.

9-6 Description of the Item “Data Format”

A&D standard format \(5 IF \ \text{TYPE} \ 0 \)
This format is used when the peripheral equipment can receive the A&D format. If an AD-8121B is used, set the printer to MODE 1 or 2.

- This format consists of fifteen characters excluding the terminator.
- A header of two characters indicates the balance condition.
- The polarity sign is placed before the data with the leading zeros. If the data is zero, the plus sign is used.
- The unit, consisting of three characters, follows the data.

\[
\begin{array}{c|c|c|c}
\text{S} & \text{T} & + & 0 \\
\text{U} & \text{S} & \text{OL} & \text{g} \\
\text{WT} & \text{QT} & \text{US} & \text{OL} \\
\end{array}
\]

DP (Dump print) format \(5 IF \ \text{TYPE} \ 1 \)
This format is used when the peripheral equipment cannot receive the A&D format. If an AD-8121B is used, set the printer to MODE 3.

- This format consists of sixteen characters excluding the terminator.
- A header of two characters indicates the balance condition. No overload header is used.
- The polarity sign is placed before the data, with spaces in place of leading zeros, if the data is not zero or overloaded.
- The unit, consisting of three characters, follows the data.

\[
\begin{array}{c|c|c|c}
\text{W} & \text{T} & + & 1 \\
\text{US} & \text{QT} & \text{US} & \text{OL} \\
\text{WT} & \text{QT} & \text{US} & \text{OL} \\
\end{array}
\]
KF format 5iF TYPE 2
This is the Karl-Fischer moisture meter format and is used when the peripheral equipment can only communicate using this format.

- This format consists of fourteen characters excluding the terminator.
- This format has no header characters.
- The polarity sign is placed before the data, with spaces in place of leading zeros, if the data is not zero or overloaded.
- This format outputs the unit only for a stable value.

```
+ _ _ _ _ _ _ _ _ 1 2 7 8 _ _ _ _ CR LF
Data   Unit   Terminator
```

MT format 5iF TYPE 3
- A header of two characters indicates the balance condition.
- The polarity sign is used only for negative data.
- The weight data uses spaces in place of the leading zeros.
- The character length of this format changes dependent upon the unit

```
S _ _ _ _ _ _ _ _ 1 2 . 7 8 _ _ _ _ CR LF
Header   Unit   Terminator
```

```
S _ _ _ _ _ _ _ _ Stable header (When data is output using methods other than the above.)
SD _ _ _ _ _ _ _ _ Unstable header
SI _ _ _ _ _ _ _ _ Overload header
```

NU (numerical) format 5iF TYPE 4
This format outputs only numerical data.

- This format consists of nine characters excluding the terminator.
- The polarity sign is placed before the data with the leading zeros. If the data is zero, the plus sign is used.

```
+ 0 0 0 1 2 . 7 8 CR LF
Data   Terminator
```

CSV format 5iF TYPE 5
- Separates the data of A&D standard format and the unit by a comma (,).
- Outputs the unit even when the data is overloaded.

```
ST,+00012.78, _ _ _ g<CR><LF>
Weight data

ST, + 0 0 0 1 2 . 7 8 _ _ _ _ g CR LF
OL, + 9 9 9 9 9 9 9 9 9 E + 1 9 _ _ _ _ g CR LF
```
9-7 Data Format Examples

Stable

A&D	S T , + 0 0 0 0 1 . 2 7 g CR LF
DP	W T + 1 . 2 7 g CR LF
KF	+ 1 . 2 7 g CR LF
MT	+ 1 . 2 7 g CR LF
NU	+ 0 0 0 0 1 . 2 7 CR LF

Unstable

A&D	U S , - 0 0 1 8 3 . 6 9 g CR LF
DP	U S - 1 8 3 . 6 9 g CR LF
KF	- 1 8 3 . 6 9 g CR LF
MT	- 1 8 3 . 6 9 g CR LF
NU	- 0 0 1 8 3 . 6 9 CR LF

Overload

Positive error

A&D	O L , + 9 9 9 9 9 9 9 9 9 9 E + 1 9 CR LF
DP	O L + 9 9 9 9 9 9 9 9 9 9 CR LF
KF	+ 9 9 9 9 9 9 9 9 9 9 CR LF
MT	+ 9 9 9 9 9 9 9 9 9 9 CR LF
NU	+ 9 9 9 9 9 9 9 9 9 9 CR LF

Negative error

A&D	O L , - 9 9 9 9 9 9 9 9 9 9 E + 1 9 CR LF
DP	O L - 9 9 9 9 9 9 9 9 9 9 CR LF
KF	- 9 9 9 9 9 9 9 9 9 9 CR LF
MT	- 9 9 9 9 9 9 9 9 9 9 CR LF
NU	- 9 9 9 9 9 9 9 9 9 9 CR LF

Space, ASCII 20h
Carriage Return, ASCII 0Dh
Line Feed, ASCII 0Ah
Note
When “Pound Ounce” is selected, the data is output with the unit of ounce (oz).

9-8 Description of the Item “Application Function”

Capacity indicator (APF 1)
In the weighing mode, the indicator displays the weight data relative to the weighing capacity in percentage. (Zero = 0%, maximum capacity = 100%)

Statistical calculation mode (APF 2)
The mode statistically calculates the weight data, and displays or outputs the results. For details, refer to “5-4 Statistical Calculation Mode”.
9-9 Clock and Calendar Function

The balance is equipped with a clock and calendar function. When the “GLP output (inFo)” parameter is set to “1” or “2” and the “Time/Date output (5-td)” parameter is set to “1”, “2” or “3”, the time and date are added to the output data. Set or confirm the time and date as follows:

Operation
1. Press and hold the SAMPLE key until bRsFnc of the function table is displayed.
2. Press the SAMPLE key several times to display l RdJ.
3. Press the PRINT key. The balance enters the mode to confirm or set the time and date.

Confirming the date
4. The current date is displayed with all the digits blinking.
 - When the date is correct and the operation is to be finished, press the CAL key and proceed to step 8.
 - When the time is to be confirmed again, press the SAMPLE key and go back to step 4.
 - When the date is not correct and is to be changed, press the RE-ZERO key and proceed to step 7.

Note
The year is expressed using a two-digit format. For example, the year 2000 is expressed as “00”.

Setting the date (with part of the digits blinking)
5. Set the date using the following keys.
 - SAMPLE key: To select the digits to change the value. The selected digits blink.
 - RE-ZERO key: To increase the value by one.
 - MODE key: To decrease the value by one.
 - PRINT key: To store the new setting, display [End] and go to step 6.
 - CAL key: To cancel the new setting and go to step 6.
Confirming the time

6 The current time is displayed with all the digits blinking.
 ● When the time is correct and the date does not need to be confirmed, press the **CAL** key and proceed to step 8.
 ● When the time is correct and the date is to be confirmed, press the **SAMPLE** key and proceed to step 4.
 ● When the time is not correct and is to be changed, press the **RE-ZERO** key and proceed to step 7.

Setting the time (with part of the digits blinking)

7 Set the time in 24-hour format using the following keys.

 - **SAMPLE** key: To select the digits to change the value. The selected digits blink.
 - **RE-ZERO** key: To increase the value by one.
 - **MODE** key: To decrease the value by one.
 - **PRINT** key: To store the new setting, display **End** and go to step 8.
 - **CAL** key: To cancel the new setting and go to step 8.

Quitting the operation

8 The balance displays the next menu of the function table. Press the **CAL** key to exit the clock and calendar function and return to the weighing mode.

Notes

- Do not enter invalid values such as a non-existing date when setting the time and date.
- When the clock backup battery has been depleted, the balance displays **rtc** **PF**. Under this condition, press any key and set the time and date. The dead battery only affects the clock and calendar function. Even so, the function works normally as long as the AC adapter is connected to the balance.
9-10 Comparator Function

The results of the comparison are indicated by **HI** **OK** **LO** on the display.

Operating conditions:
- **No comparison**
- **Comparison when the weight data is stable or overloaded, excluding “near zero”**
- **Comparison when the weight data is stable or overloaded, including “near zero”**
- **Continuous comparison, excluding “near zero”**
- **Continuous comparison, including “near zero”**

To compare, use:
- Upper limit value and lower limit value
- Digital input

Input method:

Note

"Near zero" means that the weight value is within ±10 digits of the minimum weighing value. For example, using a FX-300i in gram mode, the range of ±0.10 g is “near zero”.

For the description of “Comparator (Cp fnc)”, refer to “9-3 Details of the Function Table”.

Setting example

(Continuous comparison, excluding “near zero”, upper limit and lower limit values, digital input)

Selecting a comparator mode

1. Press and hold the **SAMPLE** key until **bA5 fnC** of the function table is displayed.
2. Press the **SAMPLE** key several times to display **Lp fnC**.
3. Press the **PRINT** key.
4. Press the **RE-ZERO** key several times to display **Lp 3**.
5. Press the **PRINT** key to store the selected mode.

Entering the upper limit value

6. With **Lp Hi** displayed, press the **PRINT** key. The current setting of the upper limit value is displayed with all the digits blinking.
 - When the current setting is not to be changed, press the **PRINT** or **CAL** key to proceed to step 7.
 - When the current setting is to be changed, press the **RE-ZERO** key. Change the setting using the following keys.
 - **SAMPLE** key: To select the digit to change the value.
 - **RE-ZERO** key: To change the value of the digit selected.
 - **MODE** key: To switch the polarity.
 - **PRINT** key: To store the new setting and go to step 7.
 - **CAL** key: To cancel the new setting and go to step 7.

Entering the lower limit value

7. With **Lp Lo** displayed, press the **PRINT** key. The current setting of the lower limit value is displayed with all the digits blinking.
 - When the current setting is not to be changed, press the **PRINT** or **CAL** key to proceed to step 8.
 - When the current setting is to be changed, press the **RE-ZERO** key. Change the setting using the following keys.
 - **SAMPLE** key: To select the digit to change the value.
 - **RE-ZERO** key: To change the value of the digit selected.
 - **MODE** key: To switch the polarity.
 - **PRINT** key: To store the new setting and go to step 8.
 - **CAL** key: To cancel the new setting and go to step 8.

8. Press the **CAL** key to exit the comparator function and return to the weighing mode.
10. ID NUMBER AND GLP REPORT

- The ID number is used to identify the balance when Good Laboratory Practice (GLP) is used.
- The ID number is maintained in non-volatile memory even if the AC adapter is removed.
- The GLP output format is selected at “GLP output (inF₀)” of the function table and can be output to a personal computer or printer using the RS-232C serial interface.
- The GLP output format includes the balance manufacturer, model, serial number, ID number and space for signature for weight data, and the weight used and results for calibration or calibration test data.

When the AD-8121B is used, the date and time can be printed using the AD-8121B clock and calendar function. In this case, set the “GLP output (inF₀)” parameter to “1”.
- The balance can output the following reports for GLP.
 - “Calibration report” of the calibration, using the internal mass (Calibration due to changes in temperature and one-touch calibration.)
 - “Calibration report” of the calibration, using an external weight.
 - “Calibration test report” of the calibration test, using an external weight.
 - “Title block” and “End block” for the weight data.

10-1 Setting the ID Number

1. Press and hold the SAMPLE key until RSfnc of the function table is displayed.
2. Press the SAMPLE key several times to display id.
3. Press the PRINT key. Set the ID number using the following keys.
 - SAMPLE key: To select the digit to change the value.
 - RE-ZERO key: To set the character of the digit selected. Refer to the display character set shown below.
 - PRINT key: To store the new ID number and display Rp Fnc.
 - CAL key: To cancel the new ID number and display Rp Fnc.
4. Press the CAL key to return to the weighing mode.

Display character set

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>k</td>
<td>l</td>
<td>m</td>
<td>n</td>
<td>o</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td>t</td>
</tr>
<tr>
<td>u</td>
<td>v</td>
<td>w</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10-2 GLP Report

Set the following parameters to output the report.
- To print the report, set the “GLP output (inF₀)” parameter to “1” and use MODE 3 of the AD-8121B. For details on using the printer, refer to “14-1 Connection to the AD-8121B Printer”. If the time and date are not correct, adjust the AD-8121B clock and calendar.
- To output the report to a personal computer using the RS-232C serial interface, set the “GLP output (inF₀)” parameter to “2”.

Note
For operational details about calibration and calibration test, refer to “7. CALIBRATION”.

47
Calibration report using an internal weight

When the setting is ",inf o 1":

AD-8121 format

```
A & D
MODEL  FZ-3000i
S/N    01234567
ID     ABCDEF0
DATE   2008/12/31
TIME   12:23:34
CALIBRATED(EXT.)
SIGNATURE

+2000.00 g
```

General data format

```
Manufacturer
Model
Serial number
ID number
Date
Time
Calibration type
Signature
```

Space, ASCII 20h
<TERM> Terminator, CR, LF or CR
CR Carriage return, ASCII 0Dh
LF Line feed, ASCII 0Ah

Calibration report using an external weight

When the setting is "inf o 1":

AD-8121 format

```
A & D
MODEL  FX-3000i
S/N    01234567
ID     ABCDEFG
DATE   2008/12/31
TIME   12:23:34
CALIBRATED(INT.)
SIGNATURE
```

General data format

```
Manufacturer
Model
Serial number
ID number
Date
Time
Calibration type
Signature
```

Space, ASCII 20h
<TERM> Terminator, CR, LF or CR
CR Carriage return, ASCII 0Dh
LF Line feed, ASCII 0Ah
Calibration test report using an external weight

(Calibration test does not perform calibration.)

When the setting is "info 1":

When the setting is "info 2":

AD-8121 format

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Serial number</th>
<th>ID number</th>
<th>Date</th>
<th>Time</th>
<th>Calibration test type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A & D</td>
<td>FX-3000i</td>
<td>01234567</td>
<td>ABCDEFG</td>
<td>2008/12/31</td>
<td>12:23:34</td>
<td></td>
</tr>
</tbody>
</table>

Calibration test (EXT.)

Actual:

- Zero point value: 0.00 g
- Target weight value: +1999.99 g

Target:

- Target weight: +2000.00 g

Signature:

General data format

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Serial number</th>
<th>ID number</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A & D</td>
<td>FX-3000i</td>
<td>01234567</td>
<td>ABCDEFG</td>
<td>2008/12/31</td>
<td>12:23:34</td>
</tr>
</tbody>
</table>

Cal. Test (Ext.)

Actual:

- Zero point value: 0.00 g
- Target weight value: +1999.99 g

Target:

- Target weight: +2000.00 g

Signature:

Space, ASCII 20h
<TERM> Terminator, CR, LF or CR
CR Carriage return, ASCII 0Dh
LF Line feed, ASCII 0Ah
Title block and end block

When a weight value is recorded as the GLP data, “Title block” and “End block” are inserted at the beginning and at the end of a group of weight values, in the GLP report.

Note

To output the report to an AD-8121B, use MODE 3 of the AD-8121B.

Operation

1. With the weight data displayed, press and hold the PRINT key until **Start** is displayed. The “Title block” is output.
2. The weight data is output according to the parameter setting of the data output mode.
3. Press and hold the PRINT key until **RecEnd** is displayed. The “End block” is output.

When the setting is " info 1":

<table>
<thead>
<tr>
<th>Title block</th>
<th>Weight data</th>
<th>General data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Model</td>
<td>A & D MODEL FX-3000i</td>
</tr>
<tr>
<td>Serial number</td>
<td>ID number</td>
<td>S/N 01234567</td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>DATE 2008/12/31</td>
</tr>
<tr>
<td>Time</td>
<td>Time</td>
<td>START TIME 12:23:34</td>
</tr>
<tr>
<td>WT +1234.56 g</td>
<td>WT +1234.61 g</td>
<td>WT +1234.56 g</td>
</tr>
<tr>
<td>WT +1234.61 g</td>
<td>WT +1234.62 g</td>
<td>WT +1234.61 g</td>
</tr>
<tr>
<td>WT +1234.53 g</td>
<td>WT +1234.71 g</td>
<td>WT +1234.61 g</td>
</tr>
<tr>
<td>WT +1234.64 g</td>
<td>WT +1234.64 g</td>
<td>WT +1234.61 g</td>
</tr>
<tr>
<td>END Time 12:34:56</td>
<td>Signature</td>
<td>END TIME 12:34:56</td>
</tr>
</tbody>
</table>

When the setting is " info 2":

<table>
<thead>
<tr>
<th>Title block</th>
<th>Weight data</th>
<th>General data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Model</td>
<td>A & D MODEL FX-3000i</td>
</tr>
<tr>
<td>Serial number</td>
<td>ID number</td>
<td>S/N 01234567</td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>DATE 2008/12/31</td>
</tr>
<tr>
<td>Time</td>
<td>Time</td>
<td>START TIME 12:23:34</td>
</tr>
<tr>
<td>WT +1234.56 g</td>
<td>WT +1234.61 g</td>
<td>WT +1234.56 g</td>
</tr>
<tr>
<td>WT +1234.61 g</td>
<td>WT +1234.62 g</td>
<td>WT +1234.61 g</td>
</tr>
<tr>
<td>WT +1234.53 g</td>
<td>WT +1234.71 g</td>
<td>WT +1234.61 g</td>
</tr>
<tr>
<td>WT +1234.64 g</td>
<td>WT +1234.64 g</td>
<td>WT +1234.61 g</td>
</tr>
<tr>
<td>END Time 12:34:56</td>
<td>Signature</td>
<td>END TIME 12:34:56</td>
</tr>
</tbody>
</table>

Space, ASCII 20h
<TERM> Terminator, CR, LF or CR
CR Carriage return, ASCII 0Dh
LF Line feed, ASCII 0Ah
11. UNDERHOOK

The underhook can be used for magnetic materials or density measurement. The built-in underhook is revealed by removing the plastic cap on the bottom of the balance. Use the underhook as shown below.

Caution
Do not apply excessive force to the underhook.
When not in use, attach the plastic cap to prevent dust from getting into the balance.
This is a programmable unit conversion function. It multiplies the weight data in grams by an arbitrary coefficient set in the function table and displays the result.

The coefficient must be within the range between the minimum and maximum shown below. If the coefficient set is beyond the range, an error is displayed and the balance returns to the coefficient setting mode, prompting to enter an appropriate value. A coefficient of 1 was set at the factory.

<table>
<thead>
<tr>
<th>Model</th>
<th>Minimum coefficient</th>
<th>Maximum coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX-120i /200i /300i</td>
<td>0.000001</td>
<td>1000</td>
</tr>
<tr>
<td>FZ-120i /200i /300i</td>
<td>0.000001</td>
<td>1000</td>
</tr>
<tr>
<td>FX-1200i /2000i /3000i</td>
<td>0.000001</td>
<td>1000</td>
</tr>
<tr>
<td>FZ-1200i /2000i /3000i</td>
<td>0.000001</td>
<td>1000</td>
</tr>
</tbody>
</table>

Operation
1. Press and hold the **SAMPLE** key until \(b_{\text{ASFCN}} \) of the function table is displayed.
2. Press the **SAMPLE** key several times to display \(\text{MLT} \).
3. Press the **PRINT** key. The balance enters the mode to confirm or set the coefficient.

Confirming the coefficient
4. The current coefficient is displayed with the first digit blinking.
 - When it is not to be changed, press the **CAL** key and proceed to step 6.
 - When it is to be changed, press the **RE-ZERO** key and proceed to step 5.

Setting the coefficient
5. Set the coefficient using the following keys.
 - **SAMPLE** key: To select a digit to change the value. The selected digit blinks.
 - **RE-ZERO** key: To change the value.
 - **MODE** key: To change the decimal point position.
 - Each time the switch is pressed, the decimal point position changes as follows:

 \[0.000001 \rightarrow 0.00001 \rightarrow \ldots \rightarrow 000000.1 \rightarrow 000001 \]
 - **PRINT** key: To store the new setting, display \(\text{End} \) and go to step 6.
 - **CAL** key: To cancel the new setting and go to step 6.

Quitting the operation
6. The balance displays \(\text{Unit} \). Press the **CAL** key to exit the programmable-unit function and return to the weighing mode.

Using the function
Press the **MODE** key to select the programmable-unit (no display on the unit section). Perform weighing as described in “5-1 Basic Operation (Gram Mode)”. After weighing, the balance displays the result (weight data in grams x coefficient).
13. RS-232C SERIAL INTERFACE

The balance is a Data Communication Equipment (DCE) device. Connect the balance to a personal computer (DTE) using a straight through cable.

Transmission system: EIA RS-232C (D-Sub 9-pin, female connector)
Transmission form: Asynchronous, bi-directional, half duplex
Transmission rate: 20 times/second, 10 times/second or 5 times/second (same as data refresh rate)
Data format:
- Baud rate: 600, 1200, 2400, 4800, 9600, 19200 bps
- Data bits: 7 or 8 bits
- Parity: Even, Odd (Data bits 7 bits)
- None (Data bits 8 bits)
- Stop bit: 1 bit
- Code: ASCII

D-Sub 9-pin assignments

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal name</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>No connection</td>
</tr>
<tr>
<td>2</td>
<td>TXD</td>
<td>Output</td>
<td>Transmit data</td>
</tr>
<tr>
<td>3</td>
<td>RXD</td>
<td>Input</td>
<td>Receive data</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>No connection</td>
</tr>
<tr>
<td>5</td>
<td>SG</td>
<td>-</td>
<td>Signal ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>Output</td>
<td>Data set ready</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Input</td>
<td>Request to send</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Output</td>
<td>Clear to send</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>No connection</td>
</tr>
</tbody>
</table>

Signal names of the balance side are the same as the DTE side with TXD and RXD reversed.
14. CONNECTION TO PERIPHERAL EQUIPMENT

14-1 Connection to the AD-8121B Printer

Set the following parameters to use the AD-8121B printer.

<table>
<thead>
<tr>
<th>Example of use</th>
<th>AD-8121B mode setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>To print A&D standard format weight data, using the FZ-(\text{i}) / FX-(\text{i}) (\text{PRINT}) key or FX-(\text{i}) auto print mode. (The time and date can be added.)</td>
<td>MODE 1</td>
</tr>
<tr>
<td>To print A&D standard format weight data, using the AD-8121B (\text{DATA}) key or AD-8121B built-in timer. (The time and date can be added.)</td>
<td>MODE 2</td>
</tr>
<tr>
<td>To print, using the AD-8121B chart printing function.</td>
<td></td>
</tr>
<tr>
<td>To print the FZ-(\text{i}) / FX-(\text{i}) statistical data.</td>
<td>MODE 3</td>
</tr>
<tr>
<td>To print GLP output.</td>
<td>MODE 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Item and Parameter</th>
<th>Factory settings</th>
<th>AD-8121B MODE 1</th>
<th>AD-8121B MODE 2</th>
<th>AD-8121B MODE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{dout})</td>
<td>Data output mode</td>
<td>0</td>
<td>0, 1, 2, 4, 5 (\text{*1})</td>
<td>3</td>
<td>0, 1, 2, 4, 5 (\text{*1})</td>
</tr>
<tr>
<td>(\text{dout})</td>
<td>Data output pause</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0, 1 (\text{*2})</td>
</tr>
<tr>
<td>(\text{S}_F)</td>
<td>Baud rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\text{S}_F)</td>
<td>Data bit, parity bit</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(\text{S}_F)</td>
<td>Terminator</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\text{S}_F)</td>
<td>Data format</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*1 Set appropriate parameters for \("\text{PR}\) (Auto print polarity)" and \("\text{PR}\) (Auto print difference)" when auto print mode A or B (\(\text{PR}\) 1 or 2) is selected.

*2 Set 1 when multiple lines are printed in the FZ-\(\text{i}\) / FX-\(\text{i}\) statistical calculation mode.

Notes
Refer to "10-2 GLP Report" for print samples.

Settings of AD-8121B DIP switches

<table>
<thead>
<tr>
<th>MODE</th>
<th>AD-8121B DIP switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE 1</td>
<td>(\text{P}) (\text{S}) (\text{Z}) (\text{L})</td>
<td>Print at receiving data. Standard mode, statistical calculation mode</td>
</tr>
<tr>
<td>MODE 2</td>
<td>(\text{P}) (\text{S}) (\text{Z}) (\text{L})</td>
<td>Print by the AD-8121B (\text{DATA}) key operation or AD-8121B built-in timer. Standard mode, interval mode, chart mode</td>
</tr>
<tr>
<td>MODE 3</td>
<td>(\text{P}) (\text{S}) (\text{Z}) (\text{L})</td>
<td>Print at receiving data. Dump print mode</td>
</tr>
</tbody>
</table>

DIP switch No.3 : Handling unstable data
ON Print
OFF Not printed

Set the DIP switch No.4 to OFF.
14-2 Connection to a Computer

The FX-i series balance can be connected to a personal computer using the RS-232C serial interface. As an option, the FXi–02 USB interface is available to transmit the balance data to a personal computer.

The FX-i series balance is a DCE.
Use a straight through cable. If purchasing the RS-232C cable on the market, check the interface connections and type.

14-3 Using Windows Communication Tools (WinCT)

When Windows is used as an operating system in a personal computer, the WinCT software, that is downloaded from the A&D website, can be used to transmit the weight data to the personal computer.

The WinCT has two communication methods: “RsCom” and “RsKey”.

RsCom
● Can transmit commands to control the balance.
● Can make bi-directional communication between the balance and a personal computer using the RS-232C serial interface.
● Can display or store the data using a text file format. Can also print the data using a printer connected to the personal computer.
● When several ports of a personal computer have balances connected, can communicate with each balance simultaneously.
● Can share a personal computer with other application software.

RsKey
● Can transmit the weight data output from the balance directly to other application software such as Microsoft Excel.
● Can be used with most application software.
Using the WinCT software, the balance can do the following:

1. Analyzing the weight data and the statistics with “RsKey”
 The weight data can be input directly into an Excel worksheet. Then, Excel can analyze the data to obtain sum, average, standard deviation, maximum and minimum value, and display them in a graph.

2. Controlling the balance using commands from a personal computer
 By using “RsCom”, the personal computer sends commands such as “re-zero” or “send weight data” to the balance and controls the balance.

3. Printing the balance GLP report using your printer
 The balance GLP report can be printed using a printer connected to the personal computer.

4. Receiving weight data at a certain interval
 The weight data can be received at a certain interval and data characteristic with elapsed time can be obtained.

5. Using a personal computer as an external indicator
 With the “RsKey” test mode function, a personal computer can be used as an external weight indicator for the balance. (To do this, set the balance data output mode to stream mode.)
15. COMMANDS

15-1 Command List

Note
A command has a terminator added, that is specified using the "Terminator (CRLF)" parameter of “Serial interface (SIF)” in the function table, and is sent to the balance.

Commands to query weight data

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Cancels the S or SIR command.</td>
</tr>
<tr>
<td>Q</td>
<td>Requests the weight data immediately.</td>
</tr>
<tr>
<td>S</td>
<td>Requests the weight data when stabilized.</td>
</tr>
<tr>
<td>SI</td>
<td>Requests the weight data immediately.</td>
</tr>
<tr>
<td>SIR</td>
<td>Requests the weight data continuously.</td>
</tr>
<tr>
<td>E_{SC}P</td>
<td>Requests the weight data when stabilized.</td>
</tr>
</tbody>
</table>

Note: The “Q” and “SI” commands, the “S” and “E_{SC}P” commands behave the same.

Commands to control the balance

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL</td>
<td>Same as the [CAL] key.</td>
</tr>
<tr>
<td>OFF</td>
<td>Turns the display off.</td>
</tr>
<tr>
<td>ON</td>
<td>Turns the display on.</td>
</tr>
<tr>
<td>P</td>
<td>Same as the [ON:OFF] key</td>
</tr>
<tr>
<td>PRT</td>
<td>Same as the [PRINT] key</td>
</tr>
<tr>
<td>R</td>
<td>Same as the [RE-ZERO] key</td>
</tr>
<tr>
<td>SMP</td>
<td>Same as the [SAMPLE] key.</td>
</tr>
<tr>
<td>T</td>
<td>Tare key</td>
</tr>
<tr>
<td>Z</td>
<td>Same as the [RE-ZERO] key</td>
</tr>
<tr>
<td>E_{SC}T</td>
<td>Same as the [RE-ZERO] key</td>
</tr>
<tr>
<td>U</td>
<td>Same as the [MODE] key</td>
</tr>
<tr>
<td>?ID</td>
<td>Requests the ID number.</td>
</tr>
<tr>
<td>?SN</td>
<td>Requests the serial number.</td>
</tr>
<tr>
<td>?TN</td>
<td>Requests the model name.</td>
</tr>
<tr>
<td>?PT</td>
<td>Requests the tare weight.</td>
</tr>
<tr>
<td>PT: ******.</td>
<td>Changes the tare weight. The unit added is the current weighing unit in A&D standard format.</td>
</tr>
</tbody>
</table>

Note: The “R”, “Z” and “E_{SC}T” commands behave the same.

E_{SC} : ASCII code 1Bh
15-2 Acknowledge Code and Error Codes

When the “AK, Error code (ErCd)” parameter of “Serial interface (5if)” is set to “1”, the balance outputs <AK> code or an error code for each command as follows:

<AK> (06h) Acknowledge in ASCII code.

- When the balance receives a command to request data and can process it, the balance outputs the data.
- When the balance receives a command to control the balance and can process it, the balance transmits the acknowledge code.

Among commands to control the balance, the following transmit the acknowledge code both when the balance receives the command and when the balance has accomplished the command. If the command cannot be processed properly, the balance transmits an error code (EC, Exx). This error can be released using the CAL command.

CAL command (Calibration command) ON command (Display ON command)
P command (Display ON/OFF command) R command (RE-ZERO command)

R command example

![Diagram of command interaction between a personal computer and a balance]

- Personal computer sends an R command (CRC LF).
- Balance receives the command and transmits the acknowledge code (AK CRC LF).
- Balance proceeds to weighing mode (126.87 g).
- Balance confirms command receipt and transmits the acknowledge code (AK CRC LF).
- Balance processes the command (0.00 g).
- Balance completes the command and displays zero (0.00 g).
When a communication error has occurred due to external noise, or a parity error has occurred due to transmission error, the balance transmits an error code. In this case, send the command again.

15-3 Settings Related to RS-232C

Concerning the RS-232C, the balance has two functions: “Data output \((dout)\)” and “Serial interface \((5_{IF})\).” Set each function as necessary.
16. MAINTENANCE

- Do not use organic solvents to clean the balance. Clean the balance with a lint free cloth that is moistened with warm water and a mild detergent.
- Do not disassemble the balance. Contact the local A&D dealer if the balance needs service or repair.
- Use the original packing material for transportation.
17. TROUBLESHOOTING

17-1 Checking the Balance Performance and Environment

The balance is a precision instrument. When the operating environment or the operating method is inadequate, correct weighing cannot be performed. Place a sample on the pan and remove it, and repeat this several times. If the balance seems to have a problem with repeatability or to perform improperly, check as described below. If improper performance persists after checking, contact the local A&D dealer for repair.

Checking that the balance performs properly

- Check the balance repeatability using an external weight. Be sure to place the weight in the center of the weighing pan.
- Check the balance repeatability, linearity and calibrated value using external weights with a known value.

Checking that the operating environment or weighing method is proper

Operating environment

- Is the weighing table solid enough (especially for the FZ-120i /200i /300i and FX-120i /200i /300i, the balances with a minimum weighing value of 0.001 g)?
- Is the balance level? Refer to “3-1 Before Use”.
- Is the operating environment free from vibration and drafts? For the FX-120i /200i /300i, has the breeze break been installed?
- Is there a strong electrical or magnetic noise source such as a motor near the balance?

Weighing method

- Is the weighing pan installed correctly?
- Is the RE-ZERO key pressed before placing a sample on the weighing pan?
- Is the sample placed in the center of the weighing pan?
- Has the balance been calibrated using an external weight? (Or one-touch calibration, only for FZ-i series)
- Has the balance been warmed up for 30 minutes before weighing?

Sample and container

- Has the sample absorbed or lost moisture due to the ambient conditions such as temperature and humidity?
- Has the temperature of the container been allowed to equalize to the ambient temperature? Refer to “3-2 During Use”.
- Is the sample charged with static electricity? Refer to “3-2 During Use”.
 The FZ-120i /200i /300i and FX-120i /200i /300i are prone to be charged with static electricity when the relative humidity is low.
- Is the sample of magnetic material such as iron? Caution is required for weighing magnetic materials. Refer to “3-2 During Use”.

17-2 Error Codes

<table>
<thead>
<tr>
<th>Display</th>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Error 1](image) | EC, E11 | Stability error
The balance can not stabilize due to an environmental problem. Prevent vibration, drafts, temperature changes, static electricity and magnetic fields. Refer to “3. PRECAUTIONS” for details on the operating environment and “6. RESPONSE ADJUSTMENT” about adapting the balance to the environment. To return to the weighing mode, press the CAL key. |
| ![Error 2](image) | Out of range error
The value entered is beyond the settable range. Re-enter the value. |
| ![CAL E](image) | EC, E20 | Calibration weight error
The calibration weight is too heavy. Confirm that the weighing pan is properly installed. Confirm the calibration weight value. Press the CAL key to return to the weighing mode. |
| ![CAL E](image) | EC, E21 | Calibration weight error
The calibration weight is too light. Confirm that the weighing pan is properly installed. Confirm the calibration weight value. Press the CAL key to return to the weighing mode. |
| ![E](image) | Overload error
A sample beyond the balance weighing capacity has been placed on the pan. Remove the sample from the pan. |
| ![E](image) | Weighing pan Error
The weight value is too light. Confirm that the weighing pan is properly installed and calibrate the balance. |
| ![lo](image) | Sample mass error
The balance can not store the sample for the counting mode or for the percent mode because it is too light. Use a sample that is heavier. |
| ![25 - PCS](image), ![50 - PCS](image), ![100 - PCS](image) | Unit mass error
The sample unit mass for the counting mode is too light. Storing and using it for counting will cause a counting error. Add samples to reach the specified number and press the PRINT key. Pressing the PRINT key without adding samples will shift the balance to the counting mode. But, to acquire accurate weighing, be sure to add samples. |
<table>
<thead>
<tr>
<th>Display</th>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EC, E00</td>
<td>Communications error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A protocol error occurred in communications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Confirm the format, baud rate and parity.</td>
</tr>
<tr>
<td></td>
<td>EC, E01</td>
<td>Undefined command error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An undefined command was received.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Confirm the command.</td>
</tr>
<tr>
<td></td>
<td>EC, E02</td>
<td>Not ready</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A received command can not be processed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e.g. The balance received a Q command, but not in the weighing mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e.g. The balance received a Q command while processing a RE-ZERO command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjust the delay time to transmit a command.</td>
</tr>
<tr>
<td></td>
<td>EC, E03</td>
<td>Timeout error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the timeout parameter is set to "t-Up 1", the balance did not receive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the next character of a command within the time limit of one second.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Confirm the communication.</td>
</tr>
<tr>
<td></td>
<td>EC, E04</td>
<td>Excess characters error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The balance received excessive characters in a command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Confirm the command.</td>
</tr>
<tr>
<td></td>
<td>EC, E06</td>
<td>Format error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A command includes incorrect data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e.g. The data is numerically incorrect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Confirm the command.</td>
</tr>
<tr>
<td></td>
<td>EC, E07</td>
<td>Parameter setting error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The received data exceeds the range that the balance can accept.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Confirm the parameter range of the command.</td>
</tr>
<tr>
<td></td>
<td>Other errors</td>
<td>If the errors described above can not be released or other errors are</td>
</tr>
<tr>
<td></td>
<td></td>
<td>displayed, contact the local A&D dealer.</td>
</tr>
</tbody>
</table>

17-3 Asking For Repair

If the balance needs service or repair, contact the local A&D dealer.

The balance is a precision instrument. Use much care when handling the balance and observe the following when transporting the balance.

- Use the original packing material.
- Remove the weighing pan from the main unit.
18. OPTIONS

Note
The FXi-02, FXi-08 and FXi-09 cannot be used at the same time.

FXi-02 USB interface (Installed in the balance, Applicable OS: Windows 98 OSR2 or later)

- Used to transmit the balance weight data (numerical value only) uni-directionally to a personal computer via USB.
- Can transmit the balance weight data (numerical value only) directly to other application software such as Microsoft Excel, Word and memo pad.
- Driver installation is not necessary.

FXi-08 Ethernet interface

- Used to connect the balance to a LAN.
- The “WinCT-Plus” data communication software is provided as an accessory and can perform the following.
 - Acquire data from multiple balances connected to a LAN.
 - Control these balances with commands.
 - Acquire data transmitted from balances.
 - Example: When pressing the PRINT key of the balance, data is output and is acquired by the computer.
 - The stored data can be used with Microsoft Excel (if installed).

FXi-09 Built-in battery unit (Ni-HM rechargeable battery pack)

FXi-10 Small breeze break

- Provided for the FZ-i series (all) and FX-120i /200i /300i as standard. Can be used for FX-1200i /2000i /3000i.

FXi-11 Large breeze break

- Breeze break with greater height. Can be used for all models. Convenient when a large beaker or measuring cylinder is used and requires more height.
FXi-15-EX Carrying case
- You can carry the FZ-i / FX-i series balance by placing it in the carrying case.

AX-FXi-31 Main unit cover
- Main unit protective cover provided as standard.

AD-1683 DC static eliminator
- Used to minimize weighing errors due to static electricity on the material. The AD-1683 is direct-current static eliminator. The ions generated produce no breeze and are effective over a long distance. Therefore, the balance can accurately weight powders, etc. by using the AD-1683.

AD-1684 Electrostatic field meter
- This option measures the amount of the static charge on the sample, tare or peripheral equipment and displays the result. If those are found to be charged, discharge them using the AD-1683 DC static eliminator.

AD-1689 Tweezers for calibration weight
- This option is used when calibrating the balance using an external weight.

AX-USB-9P-EX USB converter
- Adds a COM port to a PC.
- Enables bi-directional communication between the PC and the balance when a USB driver is installed.
- Can use serial communication software such as WinCT on a PC without COM ports.

AD-8920 Remote display
- Connected to the FX-i series balance using the RS-232C serial interface to display the weight data away from the balance.

AD-8922 Remote controller
- Connected to the FX-i series balance using the RS-232C serial interface to display the weight data and to remotely control the balance.
- Analog output and comparator output available as an option to be installed.

AD-8121B Printer
- Compact dot-matrix printer
- Statistical function, clock and calendar function, interval print function, graphic print function, dump print mode
- 5 x 7 dots, 16 characters per line
- Print paper (AX-PP143, 45 (W) x 50 (L) mm, ø65 mm)
- AC adapter or alkaline battery.
19. SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>FZ-120i</th>
<th>FZ-200i</th>
<th>FZ-300i</th>
<th>FZ-1200i</th>
<th>FZ-2000i</th>
<th>FZ-3000i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighing capacity</td>
<td>122 g</td>
<td>220 g</td>
<td>320 g</td>
<td>1220 g</td>
<td>2200 g</td>
<td>3200 g</td>
</tr>
<tr>
<td>Maximum display</td>
<td>122.084 g</td>
<td>220.084 g</td>
<td>320.084 g</td>
<td>1220.84 g</td>
<td>2200.84 g</td>
<td>3200.84 g</td>
</tr>
<tr>
<td>Minimum weighing value (1 digit)</td>
<td>0.001 g</td>
<td>0.001 g</td>
<td>0.001 g</td>
<td>0.001 g</td>
<td>0.001 g</td>
<td>0.001 g</td>
</tr>
<tr>
<td>Repeatability (Standard deviation)</td>
<td>0.01 g</td>
<td>0.01 g</td>
<td>0.01 g</td>
<td>0.01 g</td>
<td>0.01 g</td>
<td>0.01 g</td>
</tr>
<tr>
<td>Linearity</td>
<td>±0.002 g</td>
<td>±0.002 g</td>
<td>±0.002 g</td>
<td>±0.002 g</td>
<td>±0.002 g</td>
<td>±0.002 g</td>
</tr>
<tr>
<td>Stabilization time (typical at [FAST])</td>
<td>Approx. 1 second</td>
</tr>
<tr>
<td>Sensitivity drift</td>
<td>±2 ppm/°C</td>
<td>±2 ppm/°C</td>
<td>±2 ppm/°C</td>
<td>±2 ppm/°C</td>
<td>±2 ppm/°C</td>
<td>±2 ppm/°C</td>
</tr>
<tr>
<td>Accuracy right after calibration using the internal mass. See notes below</td>
<td>±0.010 g</td>
<td>±0.10 g</td>
<td>±0.15 g</td>
<td>±0.10 g</td>
<td>±0.15 g</td>
<td>±0.15 g</td>
</tr>
<tr>
<td>Operating environment</td>
<td>5°C to 40°C (41°F to 104°F)</td>
<td>85%RH or less (No condensation)</td>
</tr>
<tr>
<td>Display refresh rate</td>
<td>5 times/second, 10 times/second or 20 times/second</td>
</tr>
<tr>
<td>Counting mode</td>
<td>Minimum unit mass</td>
<td>0.001 g</td>
<td>0.001 g</td>
<td>0.001 g</td>
<td>0.001 g</td>
<td>0.001 g</td>
</tr>
<tr>
<td>Number of samples</td>
<td>5, 10, 25, 50 or 100 pieces</td>
</tr>
<tr>
<td>Percent mode</td>
<td>Minimum 100% reference mass</td>
<td>0.100 g</td>
<td>1.00 g</td>
<td>1.00 g</td>
<td>1.00 g</td>
<td>1.00 g</td>
</tr>
<tr>
<td>Minimum 100% display</td>
<td>0.01%, 0.1%, 1% (Depends on the reference mass stored.)</td>
<td>0.01%, 0.1%, 1% (Depends on the reference mass stored.)</td>
<td>0.01%, 0.1%, 1% (Depends on the reference mass stored.)</td>
<td>0.01%, 0.1%, 1% (Depends on the reference mass stored.)</td>
<td>0.01%, 0.1%, 1% (Depends on the reference mass stored.)</td>
<td>0.01%, 0.1%, 1% (Depends on the reference mass stored.)</td>
</tr>
<tr>
<td>External calibration weight</td>
<td>100 g</td>
<td>200 g</td>
<td>300 g</td>
<td>1000 g</td>
<td>2000 g</td>
<td>3000 g</td>
</tr>
<tr>
<td>Weighing pan diameter</td>
<td>130 mm</td>
<td>130 mm</td>
<td>130 mm</td>
<td>130 mm</td>
<td>130 mm</td>
<td>130 mm</td>
</tr>
<tr>
<td>Net weight</td>
<td>Approx. 3.0 kg</td>
</tr>
<tr>
<td>External dimensions</td>
<td>193 (W) x 262.5 (D) x 84.5 (H) mm</td>
<td>193 (W) x 262.5 (D) x 84.5 (H) mm</td>
<td>193 (W) x 262.5 (D) x 84.5 (H) mm</td>
<td>193 (W) x 262.5 (D) x 84.5 (H) mm</td>
<td>193 (W) x 262.5 (D) x 84.5 (H) mm</td>
<td>193 (W) x 262.5 (D) x 84.5 (H) mm</td>
</tr>
<tr>
<td>AC adapter</td>
<td>Confirm that the adapter type is correct for the local voltage and power receptacle type</td>
<td>Confirm that the adapter type is correct for the local voltage and power receptacle type</td>
<td>Confirm that the adapter type is correct for the local voltage and power receptacle type</td>
<td>Confirm that the adapter type is correct for the local voltage and power receptacle type</td>
<td>Confirm that the adapter type is correct for the local voltage and power receptacle type</td>
<td>Confirm that the adapter type is correct for the local voltage and power receptacle type</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Approx. 11VA (supplied to the AC adapter)</td>
</tr>
</tbody>
</table>

* - Accuracy right after calibration using the accessory small breeze break and the internal mass, in good ambient conditions (within the temperature range of 10°C to 30°C (50°F to 86°F) with no abrupt changes in temperature or humidity, no drafts, no vibration and no effect by magnetic fields or static electricity).

- With the FZ-i series balance, the environment and passing age may cause internal mass value error. Calibrate using an external mass and perform maintenance.
<table>
<thead>
<tr>
<th></th>
<th>FX-120i</th>
<th>FX-200i</th>
<th>FX-300i</th>
<th>FX-1200i</th>
<th>FX-2000i</th>
<th>FX-3000i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighing capacity</td>
<td>122 g</td>
<td>220 g</td>
<td>320 g</td>
<td>1220 g</td>
<td>2200 g</td>
<td>3200 g</td>
</tr>
<tr>
<td>Maximum display</td>
<td>122.084 g</td>
<td>220.084 g</td>
<td>320.084 g</td>
<td>1220.84 g</td>
<td>2200.84 g</td>
<td>3200.84 g</td>
</tr>
<tr>
<td>Minimum weighing value (1 digit)</td>
<td>0.001 g</td>
<td>0.01 g</td>
<td></td>
<td>0.001 g</td>
<td>0.01 g</td>
<td></td>
</tr>
<tr>
<td>Repeatability (Standard deviation)</td>
<td>0.001 g</td>
<td>0.01 g</td>
<td></td>
<td>0.001 g</td>
<td>0.01 g</td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td>±0.002 g</td>
<td>±0.02 g</td>
<td></td>
<td>±0.002 g</td>
<td>±0.02 g</td>
<td></td>
</tr>
<tr>
<td>Stabilization time (typical at FAST)</td>
<td></td>
<td></td>
<td>Approx. 1 second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity drift</td>
<td>±0.001 g</td>
<td>±0.01 g</td>
<td></td>
<td>±0.001 g</td>
<td>±0.01 g</td>
<td></td>
</tr>
<tr>
<td>Operating environment</td>
<td></td>
<td>5°C to 40°C (41°F to 104°F)</td>
<td>85%RH or less (No condensation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display refresh rate</td>
<td></td>
<td>5 times/second, 10 times/second or 20 times/second</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counting mode</td>
<td>Minimum unit mass</td>
<td>0.001 g</td>
<td>0.01 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of samples</td>
<td>5, 10, 25, 50 or 100 pieces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent mode</td>
<td>Minimum 100% reference mass</td>
<td>0.100 g</td>
<td>1.00 g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum 100% display</td>
<td>0.01%, 0.1%, 1% (Depends on the reference mass stored.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External calibration weight</td>
<td>100 g</td>
<td>200 g</td>
<td>300 g</td>
<td>1000 g</td>
<td>2000 g</td>
<td>3000 g</td>
</tr>
<tr>
<td></td>
<td>50 g</td>
<td>100 g</td>
<td>200 g</td>
<td>500 g</td>
<td>1000 g</td>
<td>2000 g</td>
</tr>
<tr>
<td></td>
<td>100 g</td>
<td>200 g</td>
<td>100 g</td>
<td>100 g</td>
<td>1000 g</td>
<td>1000 g</td>
</tr>
<tr>
<td></td>
<td>1000 g</td>
<td>500 g</td>
<td>1000 g</td>
<td>2000 g</td>
<td>1000 g</td>
<td>2000 g</td>
</tr>
<tr>
<td></td>
<td>3000 g</td>
<td>2000 g</td>
<td>3000 g</td>
<td>3000 g</td>
<td>3000 g</td>
<td>3000 g</td>
</tr>
<tr>
<td>Weighing pan diameter</td>
<td>130 mm</td>
<td></td>
<td>150 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net weight</td>
<td></td>
<td>Approx. 2.5 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External dimensions</td>
<td></td>
<td>193 (W) x 262.5 (D) x 84.5 (H) mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC adapter</td>
<td>Confirm that the adapter type is correct for the local voltage and power receptacle type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td></td>
<td>Approx. 11VA (supplied to the AC adapter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td>RS-232C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. EXTERNAL DIMENSIONS

FZ-120i / 200i / 300i
FX-120i / 200i / 300i

-FZ-1200i / 2000i / 3000i-
FX-1200i / 2000i / 3000i

*1: Width of the opening when a clear plate is removed
*2: Inside dimension
*3: Weighing pan diameter
*4: Height from the weighing pan up to the cap of the breeze break (Inside dimension)
*5: Height of the opening when a clear plate is removed

FZ-1200i / 2000i / 3000i, the small break breeze is included in the accessories.

Unit: mm
21. TERMS/INDEX

Terms

Stable value The weight data when the stabilization indicator appears.

Environment Ambient conditions such as vibration, drafts, temperature, static electricity and magnetic fields which affect the weighing operation.

Calibration Adjustment of the balance so that it can weigh accurately.

Output To output the weight data using the RS-232C serial interface.

Zero point A weighing reference point or the zero display. Usually refers to the value displayed when nothing is on the weighing pan.

Digit Unit of digital resolution. Used for the balance, a unit of minimum weighing value.

Tare To cancel the weight of a container which is not included in the weight data.

Mode Balance operational function.

Re-zero To set the display to zero.

GLP Good Laboratory Practice.

Repeatability Variation in measured values obtained when the same weight is placed and removed repetitively. Usually expressed as a standard deviation.

E.g. Standard deviation=1 digit: This means that measured values fall within ±1 digit in the frequency of about 68%.

Stabilization time Time required after a sample being placed, until the stabilization indicator illuminates and the weight data is displayed.

Sensitivity drift An affect that a change in temperature causes to the weight data. Expressed as temperature coefficient.

E.g. Temperature coefficient = 2 ppm/°C: If a load is 300 g and the temperature changes by 10°C, the value displayed changes by the following value.

0.0002%/°C × 10°C × 300 g = 6 mg
Index

Keys and symbols

ON/OFF key 9
SAMPLE key 9
MODE key 9, 10
CAL key 9, 27, 29
PRINT key 9
RE-ZERO key 8, 9, 13
Stabilization indicator 9
Interval output mode active indicator .. 9
Interval output mode standby indicator . 9
Processing indicator 9
CR .. 42
LF .. 42
Space 42
100% reference mass 16

- A -
A&D standard format 36, 40
AC adapter 5
AC adapter ID label 5
ACAI 15
AD-1683 7, 65
AD-8121B 50, 54, 65
AD-8920 65
AD-8922 65
AK ... 58
Animal mode indicator 9
RP Fnc Application 17, 36
RP-b Auto print difference 35
RPF Application function 17, 36
RP-P Auto print polarity 35, 54
Application 17, 36
Application function 17, 36
Rr-d Zero after output 35
Rb-f Auto feed 35
Auto display-OFF 34, 38
Auto display-ON 34, 38
Auto print difference 35
Auto print mode A 35, 39
Auto print mode B 35, 39
Auto print polarity 35
AVERAGE Average 19
Average 17, 19, 36
AX-FXi-13 65

- B -
br5Fnc Environment display 12, 34
Baud rate 34, 53, 54
bEEP Beep 34
bEP+ HI buzzer 34
bEP- LO buzzer 34
bEP- OK buzzer 34
bPS Baud rate 36, 54
Breeze break 5, 64
bPff Data bit, parity bit 36, 54
Built-in battery unit 64

- C -
CAL E calibration weight error 62
CAL E calibration weight error 62
CALSET Internal mass value correction 26, 36
CAL key 9
Calibration 24, 27, 28, 32, 47, 62, 69
Calibration report 28, 47
Calibration test 29, 47
Calibration test report 30, 47
CREEL 19
Capacity indicator 9, 36, 43
CL Adj Clock 34, 44
CLEAR 19
Coefficient of variation 17, 19, 36
Command list 57
Comparator function 46
Comparator indicators 9
Cond Condition 34, 37
Counting mode 14
CP Comparator mode 34
CP Fnc Comparator 34
CP H Upper limit 34
CP L Lower limit 34
CLF Terminator 36, 54
CSV format 36, 41
CV Coefficient of variation 19

- D -
Data bits 53
Data format 36
- **N** -

NET indicator 9
NU format36, 41
Number of data17, 36

- **O** -

ON:OFF key9, 31
Operating environment66,67

- **P** -

Pan support ... 5
Parity ..53
Percent Mode16
Permit ..31
ρ_{nt} Decimal point43, 38
ρ_{off} Auto display-OFF34, 38
ρ_{on} Auto display-ON33, 38
PRINT key9, 12
Printer54, 65
Processing indicator9
Programmable unit52
ρ_{rt} Data output mode35, 54
ρ_{ue} Data output pause35, 54

- **R** -

Range....................................19
Range17, 19, 36
$\rho_{EADY}?$26
Remote controller65
Remote display65
Repeatability66, 67
Response indicators9, 23
RE-ZERO key 8, 9
ρ_{at} Display at start33, 34
RS-232C53, 55
RsCom55
RsKey ..65

- **S** -

SAMPLE key9, 12
SD Standard deviation19
Sensitivity drift66, 67

- **T** -

Tare ..13, 14, 16, 22
Terminator36
Timeout36
Title block50
Transmission form53
Transmission rate53
Transmission system53
ρ_{ZC} Zero tracking34, 37
ρ_{UP} Timeout36
ρ_{YPE} Data format36, 54

- **U** -

Underhook51
Units9, 10, 12
Upper limit value9
USB interface46

- **W** -

Weighing13
Weighing capacity8, 43, 62, 66, 67
Weighing pan5
Weighing pan diameter66, 67
Weighing units10
WinCT55

- **V** -

Zero tracking38